Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras
DOI:
https://doi.org/10.33096/ijodas.v1i3.18Keywords:
Harga Beras, Peramalan, ARIMA, Jaringan Syaraf TiruanAbstract
Beras merupakan bahan makanan pokok yang setiap bulannya selalu mengalami kenaikan dan penurunan harga, disebabkan adanya beberapa faktor. Hal ini menimbulkan ketertarikan untuk dilakukannya prediksi harga beras periode selanjutnya. Berdasarkan data rata-rata harga beras bulanan di tingkat grosir pada tahun 2010-2018 yang diperoleh dari situs resmi BPS, fluktuasi harga beras cenderung mengikuti pola musiman. Metode ARIMA merupakan metode yang paling sering digunakan dalam melakukan peramalan data berpola musiman. Metode lain yang dapat digunakan dalam melakukan peramalan harga beras adalah Jaringan Syaraf Tiruan metode Backpropagation. Pada penelitian ini dilakukan perbandingan terhadap kedua metode tersebut untuk menentukan metode yang lebih akurat dalam melakukan peramalan harga beras. Kriteria ukuran kesalahan peramalan yang digunakan untuk mengetahui ketepatan hasil peramalan adalah menghitung Mean Squared Error (MSE) dari data hasil ramalan masing-masing metode dengan data out sample (Januari 2019- Desember 2019). Berdasarkan hasil peramalan dengan metode ARIMA diperoleh model ARIMA terbaik adalah ARIMA (1,1,0) (0,1,1)12 dengan nilai MSE 51695.36. Sedangkan dengan Jaringan Syaraf Tiruan metode Backpropagation untuk 6 tahun model pelatihan dan 4 tahun untuk model pengujian, diperoleh model arsitektur terbaik adalah JST 12-7-1 dengan nilai MSE 43475.02. Dengan demikian metode yang paling optimal untuk memprediksi harga beras periode selanjutnya adalah JST 12-7-1.
Downloads
References
A. R. Yanuarti and M. D. Afsari, “Profil Komoditas Barang Kebutuhan Pokok Dan Barang Penting Komoditas Beras,” 2016, p. 44.
K. Sukiyono and R. Rosdiana, “Pendugaan Model Peramalan Harga Beras Pada Tingkat Grosir,” J. AGRISEP, vol. 17, no. 1, pp. 23–30, 2018, doi: 10.31186/jagrisep.17.1.23-30.
R. Ristiana, “Perbandingan arima dan jaringan syaraf tiruan propagasi balik dalam peramalan tingkat inflasi nasional radita ristiana,” 2015.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, p. 30, 2018, doi: 10.26594/register.v4i1.1157.
V. K. Laura, “Peramalan Banyaknya Penabung Di Credit Union Sumber Kasih Teraju Dengan Metode Box Jenkins,” 2018.
L. R. Sasongko, L. N. Rahayu, and A. R. Kota, “Penentuan Model Peramalan Indeks Harga Saham Gabungan dengan Metode Arima,” Pros. Semin. Nas. Sains dan Pendidik. Sains UKSW, pp. 786–796, 2010.
Z. Kafara, F. Y. Rumlawang, and L. J. Sinay, “Peramalan Curah Hujan Dengan Pendekatan Seasonal Autoregressive Integrated Moving Average (Sarima),” BAREKENG J. Ilmu Mat. dan Terap., vol. 11, no. 1, pp. 63–74, 2017, doi: 10.30598/barekengvol11iss1pp63-74.
N. Istiqomah, “Prediksi Kemunculan Titik Panas Di Provinsi Riau Menggunakan Seasonal Autoregressive Integrated Moving Average (Sarima),"p. 19, 2015.
M. T. P. Manalu, “Jaringan Syaraf Tiruan untuk Memprediksi Curah Hujan Sumatera Utara dengan Metode Back Propagation (Studi Kasus : BMKG Medan),” JURIKOM (Jurnal Ris. Komputer), vol. 3, no. 1, pp. 35–40, 2016.
N. Amalina, “Penerapan Metode Artificial Neural Networks Untuk Meramalkan Nilai Ekspor Migas Dan Non Migas Di Indonesia,” 2016.
Azis. Adriamin, Izzati. Munifatul, and Haryanti. Sri, "Aktivitas Antioksidan dan Nilai Gizi dari Beberapa Jenis Beras dan Millet sebagai Bahan Pangan Fungsional Indonesia," Jurnal Biologi, vol 4, no. 1, pp. 45-61, 2015.
Bobby. Akbar, "Peramalan Nilai Impor Non Migas di Jawa Timur dengan Menggunakan Metode ARIMA BOX-JENKINS," 2017.
Cynthia. Eka Pandu and Ismanto. Edi, "Jaringan Syaraf Tiruan Algoritma Backpropogation dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau," Jurnal Teknologi dan Sistem Informasi Univrab (RABIT) Universitas Muhammadiyah Riau, vol 2, no. 2, pp. 196-209, 2017.
M. Andi Alfian Fadila, "Aplikasi Jaringan Syaraf Tiruan dalam Memprediksi Penjualan Mobil pada PT. Hadji Kalla Sengkang," 2017.
Gunaryati. Atris, Fauziah and Andryana. Septi, "Perbandingan Metode-metode Peramalan Statistika untuk Data indeks Harga Pangan," Jurnal Universitas Nasional, vol 2, no. 3, pp. 241- 248, 2018.
Sumarjaja. Wayan, "Analisis Deret Waktu," 2016.
Published
Issue
Section
License
Authors retain copyright and full publishing rights to their articles. Upon acceptance, authors grant Indonesian Journal of Data and Science a non-exclusive license to publish the work and to identify itself as the original publisher.
Self-archiving. Authors may deposit the submitted version, accepted manuscript, and version of record in institutional or subject repositories, with citation to the published article and a link to the version of record on the journal website.
Commercial permissions. Uses intended for commercial advantage or monetary compensation are not permitted under CC BY-NC 4.0. For permissions, contact the editorial office at ijodas.journal@gmail.com.
Legacy notice. Some earlier PDFs may display “Copyright © [Journal Name]” or only a CC BY-NC logo without the full license text. To ensure clarity, the authors maintain copyright, and all articles are distributed under CC BY-NC 4.0. Where any discrepancy exists, this policy and the article landing-page license statement prevail.










