Enhancing Gastrointestinal Disease Diagnosis with KNN: A Study on WCE Image Classification
Abstract
This study explores the application of the K-Nearest Neighbors (KNN) algorithm, following Sobel segmentation and Hu Moment feature extraction, to classify Wireless Capsule Endoscopy (WCE) images into Normal and Ulcerative Colitis conditions. Through a rigorous 5-fold cross-validation approach, the research aimed to determine the KNN algorithm's accuracy, precision, recall, and F1-score on the WCE Curated Colon Disease Dataset. The findings revealed high performance across all metrics, with accuracy rates extending up to 90.625%. The confusion matrix provided further validation, illustrating a high true positive rate coupled with a low false negative rate. These results substantiate the hypothesis that employing edge detection and shape descriptors as pre-processing techniques can significantly enhance the efficacy of machine learning algorithms in medical image classification. The study’s contribution is twofold: it reaffirms the potential of machine learning in the advancement of medical diagnostics and provides a methodological framework for automated image classification that can assist clinicians. It is recommended that future research extends to broader datasets and explores various algorithms to enhance diagnostic precision. In practice, integrating this research into a clinical decision support system could revolutionize diagnostic processes, offering a non-invasive, accurate, and efficient tool for gastroenterological diagnostics.
References
Z. H. Zhou, Machine Learning. 2021.
M. Novitasari, “Classification of House Buildings Based on Land Size Using the K-Nearest Neighbor Algorithm,” AIP Conference Proceedings, vol. 2499. 2022, doi: 10.1063/5.0104960.
M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 28, pp. 269–274, 2019, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Baharuddin, Hasanuddin, Azis - 2019 - Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca.pdf.
S. AbuRass, “Enhancing Convolutional Neural Network using Hu’s Moments,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 12, pp. 130–137, 2020, doi: 10.14569/IJACSA.2020.0111216.
A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.
A. Fitria and H. Azis, “Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 102–106, 2018, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Fitria, Azis - 2018 - Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier.pdf.
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Azis, Admojo, Susanti - 2020 - Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah.pdf.
A. M. Argina, “Application of the K-Nearest Neighbor Classification Method on a Dataset of Diabetes Patients,” Indones. J. Data Sci., 2020.
F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020.
D. Pradana, M. Luthfi Alghifari, M. Farhan Juna, and D. Palaguna, “Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network,” Indones. J. Data Sci., vol. 3, no. 2, pp. 55–60, 2022, doi: 10.56705/ijodas.v3i2.35.
Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indones. J. Data Sci., vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.
D. Cahyanti, A. Rahmayani, and ..., “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. …, 2020, [Online]. Available: https://www.jurnal.yoctobrain.org/index.php/ijodas/article/view/13.
F. T. Admojo, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., 2020, [Online]. Available: https://jurnal.yoctobrain.org/index.php/ijodas/article/view/12.
I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., vol. 2, no. 1, pp. 21–28, 2021, doi: 10.33096/ijodas.v2i1.25.
D. Ratnasari, “Comparison of Performance of Four Distance Metric Algorithms in K-Nearest Neighbor Method on Diabetes Patient Data,” Indones. J. Data Sci., 2023, [Online]. Available: https://www.jurnal.yoctobrain.org/index.php/ijodas/article/view/71.
R. Tian, “Sobel edge detection based on weighted nuclear norm minimization image denoising,” Electron., vol. 10, no. 6, pp. 1–15, 2021, doi: 10.3390/electronics10060655.
Y. Harshavardhan, “Comparative analysis of accuracy in identification of bone fracture detection using Prewitt edge detection with Sobel edge detection approach,” AIP Conf. Proc., vol. 2822, no. 1, 2023, doi: 10.1063/5.0173412.
B. P. Sari, “Classification System for Cervical Cell Images based on Hu Moment Invariants Methods and Support Vector Machine,” 2021 Int. Conf. Intell. Technol. CONIT 2021, 2021, doi: 10.1109/CONIT51480.2021.9498353.
Y. Jusman, “Machine Learnings of Dental Caries Images based on Hu Moment Invariants Features,” Proc. - 2021 Int. Semin. Appl. Technol. Inf. Commun. IT Oppor. Creat. Digit. Innov. Commun. within Glob. Pandemic, iSemantic 2021, pp. 296–299, 2021, doi: 10.1109/iSemantic52711.2021.9573208.
W. Kong, “Sobel Edge Detection Algorithm with Adaptive Threshold based on Improved Genetic Algorithm for Image Processing,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 2, pp. 557–562, 2023, doi: 10.14569/IJACSA.2023.0140266.
D. R. D. Varma, “Performance Monitoring of Novel Iris Detection System using Sobel Algorithm in Comparison with Canny Algorithm by Minimizing the Mean Square Error,” Proc. 3rd Int. Conf. Intell. Eng. Manag. ICIEM 2022, pp. 509–512, 2022, doi: 10.1109/ICIEM54221.2022.9853127.
Y. Jusman, “Classification System of Malaria Disease with Hu Moment Invariant and Support Vector Machines,” Proc. - 2022 2nd Int. Conf. Electron. Electr. Eng. Intell. Syst. ICE3IS 2022, pp. 365–368, 2022, doi: 10.1109/ICE3IS56585.2022.10010304.
O. Karal, “Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation,” Proc. - 2020 Innov. Intell. Syst. Appl. Conf. ASYU 2020, 2020, doi: 10.1109/ASYU50717.2020.9259880.
Z. Xiong, “Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation,” Comput. Mater. Sci., vol. 171, 2020, doi: 10.1016/j.commatsci.2019.109203.
H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, Aug. 2020, doi: 10.33096/ilkom.v12i2.507.81-86.
S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.
A. A. D. Halim and S. Anraeni, “Analisis Klasifikasi Dataset Citra Penyakit Pneumonia menggunakan Metode K-Nearest Neighbor (KNN),” Indones. J. Data Sci., vol. 2, no. 1, pp. 1–12, 2021, doi: 10.33096/ijodas.v2i1.23.
 
											


 
 