Comparative Analysis of Machine Learning Algorithm Variations in Classifying Body Shaming Topics on Social Media X

Authors

  • Sarah FIla Nurul Fitri H Universitas Muslim Indonesia
  • Farniwati Fattah Universitas Muslim Indonesia
  • Huzain Azis Universitas Muslim Indonesia

DOI:

https://doi.org/10.56705/ijodas.v5i2.82

Keywords:

Machine Learning, Body Shaming, Decision Tree, K-Nearest Neighbor, Support Vector Machine

Abstract

Machine learning is an approach in computer science where systems or models can learn from data and experience to improve performance or perform specific tasks. There are several popular machine learning algorithms, such as naïve bayes, decision tree, K-NN, and SVM. This study aims to compare the performance of accuracy, precision, recall, and F-1 score in sentiment analysis of body shaming topics on Social Media X (formerly known as Twitter) by applying decision tree, K-NN, and SVM methods and identifying the most effective algorithm in classifying the data. Based on the classification performance testing results, it can be concluded that the classification method using the trigram feature model provides the best performance compared to other methods. The trigram model is able to achieve high recall, particularly in recognizing positive classes, without significantly compromising accuracy

Downloads

Download data is not yet available.

References

A. Rahmansyah, O. Dewi, P. Andini, T. Hastuti, P. Ningrum, and M. E. Suryana, “Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine,” 2018.

A. Roihan, P. Abas Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” Tangerang, Apr. 2020.

D. F. Zhafira, B. Rahayudi, and Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” Malang, Aug. 2021.

M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Naive Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp. 139–150, Nov. 2021, doi: 10.30812/matrik.v21i1.1092.

St. F. Fattah and Purnawansyah, “Analisis Sentimen Terhadap Body Shaming Pada Twitter Menggunakan Metode Naïve Bayes Classifier,” Indonesian Journal of Data and Science (IJODAS), vol. 3, no. 2, pp. 61–71, 2022, [Online]. Available: https://www.kaggle.com/

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE,” AITI: Jurnal Teknologi Informasi, vol. 18, no. Agustus, pp. 173–184, 2021.

A. Q. Surbakti, R. Hayami, and J. Al Amien, “Analisa Tanggapan Terhadap PSBB Di Indonesia Dengan Algoritma Decision Tree Pada Twitter,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 2, no. 2, pp. 91–97, Dec. 2021, doi: 10.37859/coscitech.v2i2.2851.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” ILKOM Jurnal Ilmiah, vol. 11, no. 3, pp. 269–274, Dec. 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

T. M. F. A. N. J. A. Septian, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” Surabaya, Aug. 2019. [Online]. Available: https://t.co/9WloaWpfD5

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.

Y. Julianto, D. H. Setiabudi, and S. Rostianingsih, “Analisis Sentimen Ulasan Restoran Menggunakan Metode Support Vector Machine,” Surabaya, 2022.

M. I. Hasan, “Information Retrieval System Artikel Kesehatan Menggunakan Pembobotan TF-IDF dan Latent Semantic Indexing,” 2018.

M. Syarifuddin, “Analisis Sentimen Opini Publik Terhadap Efek PSBB Pada Twitter dengan Algoritma Decision Tree, KNN, dan Naive Bayes,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 87–94, Aug. 2020, doi: 10.33480/inti.v15i1.1433.

Downloads

Published

2024-07-31

How to Cite

Comparative Analysis of Machine Learning Algorithm Variations in Classifying Body Shaming Topics on Social Media X. (2024). Indonesian Journal of Data and Science, 5(2), 121-132. https://doi.org/10.56705/ijodas.v5i2.82