Comparative Analysis of Machine Learning Algorithm Variations in Classifying Body Shaming Topics on Social Media X
DOI:
https://doi.org/10.56705/ijodas.v5i2.82Keywords:
Machine Learning, Body Shaming, Decision Tree, K-Nearest Neighbor, Support Vector MachineAbstract
Machine learning is an approach in computer science where systems or models can learn from data and experience to improve performance or perform specific tasks. There are several popular machine learning algorithms, such as naïve bayes, decision tree, K-NN, and SVM. This study aims to compare the performance of accuracy, precision, recall, and F-1 score in sentiment analysis of body shaming topics on Social Media X (formerly known as Twitter) by applying decision tree, K-NN, and SVM methods and identifying the most effective algorithm in classifying the data. Based on the classification performance testing results, it can be concluded that the classification method using the trigram feature model provides the best performance compared to other methods. The trigram model is able to achieve high recall, particularly in recognizing positive classes, without significantly compromising accuracy
Downloads
References
A. Rahmansyah, O. Dewi, P. Andini, T. Hastuti, P. Ningrum, and M. E. Suryana, “Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine,” 2018.
A. Roihan, P. Abas Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” Tangerang, Apr. 2020.
D. F. Zhafira, B. Rahayudi, and Indriati, “Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube,” Malang, Aug. 2021.
M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Naive Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp. 139–150, Nov. 2021, doi: 10.30812/matrik.v21i1.1092.
St. F. Fattah and Purnawansyah, “Analisis Sentimen Terhadap Body Shaming Pada Twitter Menggunakan Metode Naïve Bayes Classifier,” Indonesian Journal of Data and Science (IJODAS), vol. 3, no. 2, pp. 61–71, 2022, [Online]. Available: https://www.kaggle.com/
C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE,” AITI: Jurnal Teknologi Informasi, vol. 18, no. Agustus, pp. 173–184, 2021.
A. Q. Surbakti, R. Hayami, and J. Al Amien, “Analisa Tanggapan Terhadap PSBB Di Indonesia Dengan Algoritma Decision Tree Pada Twitter,” Jurnal CoSciTech (Computer Science and Information Technology), vol. 2, no. 2, pp. 91–97, Dec. 2021, doi: 10.37859/coscitech.v2i2.2851.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” ILKOM Jurnal Ilmiah, vol. 11, no. 3, pp. 269–274, Dec. 2019, doi: 10.33096/ilkom.v11i3.489.269-274.
T. M. F. A. N. J. A. Septian, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” Surabaya, Aug. 2019. [Online]. Available: https://t.co/9WloaWpfD5
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.
Y. Julianto, D. H. Setiabudi, and S. Rostianingsih, “Analisis Sentimen Ulasan Restoran Menggunakan Metode Support Vector Machine,” Surabaya, 2022.
M. I. Hasan, “Information Retrieval System Artikel Kesehatan Menggunakan Pembobotan TF-IDF dan Latent Semantic Indexing,” 2018.
M. Syarifuddin, “Analisis Sentimen Opini Publik Terhadap Efek PSBB Pada Twitter dengan Algoritma Decision Tree, KNN, dan Naive Bayes,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 87–94, Aug. 2020, doi: 10.33480/inti.v15i1.1433.
Downloads
Published
Issue
Section
License
Authors retain copyright and full publishing rights to their articles. Upon acceptance, authors grant Indonesian Journal of Data and Science a non-exclusive license to publish the work and to identify itself as the original publisher.
Self-archiving. Authors may deposit the submitted version, accepted manuscript, and version of record in institutional or subject repositories, with citation to the published article and a link to the version of record on the journal website.
Commercial permissions. Uses intended for commercial advantage or monetary compensation are not permitted under CC BY-NC 4.0. For permissions, contact the editorial office at ijodas.journal@gmail.com.
Legacy notice. Some earlier PDFs may display “Copyright © [Journal Name]” or only a CC BY-NC logo without the full license text. To ensure clarity, the authors maintain copyright, and all articles are distributed under CC BY-NC 4.0. Where any discrepancy exists, this policy and the article landing-page license statement prevail.










