Sales Forecasting Analysis Using Fuzzy Time Series and Simple Linear Regression Methods at Toko Ari

Authors

  • Ni Luh Sri April Yanti Institut Bisnis dan Teknologi Indonesia
  • Ni Wayan Jeri Kusuma Dewi Institut Bisnis dan Teknologi Indonesia
  • I Gede Made Yudi Antara Institut Bisnis dan Teknologi Indonesia
  • Desak Made Dwi Utami Putra Institut Bisnis dan Teknologi Indonesia
  • Putu Wirayudi Aditama Institut Bisnis dan Teknologi Indonesia

DOI:

https://doi.org/10.56705/ijodas.v6i3.368

Keywords:

Sales Forecasting, Fuzzy Time Series, Simple Linear Regression , MAPE, Retail Business

Abstract

Introduction: Forecasting, often referred to as prediction, can actually help assess conditions or predict future sales. In the business world forecasting is crucial because it can help companies plan their future operations especially when faced with sudden increases and decreases in sales and stockpiles. Especially in retail forecasting is extremely helpful in purchasing merchandise, managing inventory in the warehouse, and reducing losses due to changing customer preferences. Ari's shop, located on Jalan Raya Samu, Singapadu Kaler, Gianyar, Bali, also experiences increases and decreases in monthly sales. Therefore, it is hoped that this sales forecasting can help maintain more stable and smooth operations. Methods: This study used two methods to forecast sales: Fuzzy Time Series (FTS) and Simple Linear Regression (SLR), to predict figures from Ari's shop's monthly sales data. Both methods use the same dataset, which is Ari's Store sales data for 13 months, from January 2024 to January 2025. The forecast results are then compared using the Mean Absolute Percentage Error (MAPE), which measures the model's accuracy in predicting results. Results: Based on the sales forecasts performed, both models produced fairly accurate predictions due to their low MAPE values, below 10%. Of the two methods, Simple Linear Regression provided more accurate results with a MAPE of 3.57%. Meanwhile, the Fuzzy Time Series method produced a MAPE of 5.53%. This difference in values indicates that the linear regression model is more appropriate for Ari's Store sales data, especially since the data pattern tends to follow a linear trend.

Downloads

Download data is not yet available.

References

[1] F. M. Putri, “Sales Forecasting Level of Embroidery and Needlework Products Using the Trend Moment

Method,” Jurnal Informatika Ekonomi Bisnis, vol. 4, pp. 34–38, 2022, doi: 10.37034/infeb.v4i2.122.

[2] A. Lusiana and P. Yuliarty, “APPLICATION OF FORECASTING METHODS ON ROOF DEMAND AT

PT X,” Industri Inovatif : Jurnal Teknik Industri, vol. 10, no. 1, pp. 11–20, 2020, doi:

10.36040/industri.v10i1.2530.

[3] M. Y. Fathoni and S. Wijayanto, “Forecasting LPG Gas Sales in Grocery Stores Using the Fuzzy Time Series

Method,” Jurnal JUPITER, vol. 13, no. 2, pp. 87–96, 2021, [Online]. Available:

https://www.academia.edu/download/91366556/489563665.pdf

[4] M. Mustopa, I. Junaedi, and A. Z. Sianipar, “Sales Information System and Stock Control of Building

Materials at Delima Building Materials Store,” Jurnal Manajamen Informatika Jayakarta, vol. 1, no. 2, p.

105, 2021, doi: 10.52362/jmijayakarta.v1i2.447.

[5] E. Aditya, “Sales Forecasting of Rice Sales Using Linear Regression Method to Determine Rice Inventory at

Uci Mart,” vol. 12, no. 1, pp. 75–84, 2024.

[6] Srilaksmi Maharani, “Sales Forecasting Analysis at CV. Sandang Jaya Gemilang Textile Using the Fuzzy

Time Series Method,” -, vol., no., p., 2024.

[7] Lovita Sari, “Analysis of Warung Mina Peguyangan's Revenue Forecasting Using the Simple Linear

Regression Method,” -, vol., no., p., 2023.

[8] A. Rianti, N. W. A. Majid, and A. Fauzi, “CRISP-DM: Data Science Project Methodology,” Prosiding

Seminar Nasional Teknologi …, pp. 107–114, 2023, [Online]. Available:

http://ojs.udb.ac.id/index.php/Senatib/article/view/3015

[9] [10] [11] [12] [13] [14] [15] [16] Indonesian Journal of Data and Science

B. G. Sudarsono, M. I. Leo, A. Santoso, and F. Hendrawan, “Netflix Data Mining Analysis Using Rapid Miner

Application,” JBASE - Journal of Business and Audit Information Systems, vol. 4, no. 1, pp. 13–21, 2021, doi:

10.30813/jbase.v4i1.2729.

I. Permana and F. N. S. Salisah, “The Effect of Data Normalization on the Performance of Backpropagation

Algorithm Classification Results,” Indonesian Journal of Informatic Research and Software Engineering

(IJIRSE), vol. 2, no. 1, pp. 67–72, 2022, doi: 10.57152/ijirse.v2i1.311.

F. S. Aritonang, I. M. Sarkis, and A. Situmorang, “Forecasting the Number of Vaccines Provided for Toddlers

Using the Trend Projection Method at the Toba Regency Health Office,” METHOSISFO : Jurnal Ilmiah

Sistem Informasi, vol. 2, no. 1, pp. 39–45, 2022, [Online]. Available: http://ojs.fikom-

methodist.net/index.php/METHOSISFO

E. Darnila, R. K. Dinata, and S. Ramadani, “Predicting Market Prices of Food Crop Commodities in North

Aceh During the Covid-19 Pandemic Using the Fuzzy Time Series Model Chen Method,” JTIK (Jurnal Teknik

Informatika Kaputama), vol. 7, no. 1, pp. 17–26, 2023, doi: 10.59697/jtik.v7i1.26.

V. Vivianti, M. Aidid, and M. Nusrang, “Implementation of Fuzzy Time Series Method for Quantity

Forecasting,” Journal of Statistics and Its Application on Teaching and Research, pp. 1–12, 2020.

W. Wahyudi, “Sales Forecasting Analysis of Aqua Gallon Filled Products to Determine Inventory (Case Study

at PT. Tirta Usaha Cianjur),” no. April, pp. 1–67, 2022, [Online]. Available:

http://eprints.unpak.ac.id/5714/%0Ahttp://eprints.unpak.ac.id/5714/1/2022 Widadi Wahyudi 021117082.pdf

W. Wijaya, “Faculty of Business, Buddhi Dharma University, Tangerang 2020,” Skripsi, p. 13, 2020.

R. A. Prasetyo, “Multiple Linear Regression Analysis to Examine Factors Influencing Poverty in West

Sumatra Province,” Journal of Mathematics UNP, vol. 7, no. 2, p. 62, 2022, doi:

10.24036/unpjomath.v7i2.12777

[17] [18] [19] [20] [21] [22] [23] [24] [25] Indonesian Journal of Data and Science

Fatawa Imam Al Muftin and Fendi Hidayat, “Sales Information System,” Zona Komputer: Program Studi

Sistem Informasi Universitas Batam, vol. 13, no. 3, pp. 232–237, 2024, doi: 10.37776/zkomp.v13i3.1461.

I. B. B. Mahayana, I. Mulyadi, and S. Soraya, “Helmet Sales Forecasting Using the ARIMA Method (Case

Study of Bagus Store)),” Inferensi, vol. 5, no. 1, p. 45, 2022, doi: 10.12962/j27213862.v5i1.12469.

W. B. Sebayang, “Adolescent Childbirth with Asphyxia Neonatorum,” Jurnal Aisyah : Jurnal Ilmu

Kesehatan, vol. 7, no. 2, pp. 669–672, 2022, doi: 10.30604/jika.v7i2.1507.

A. Triono, A. S. Budi, and R. Abdillah, “Implementation of Vigenère Chipper Cipher Cracking Using Python

Programming Language,” Jurnal JOCOTIS - Journal Science Informatika and Robotics, vol. 1, no. 1, pp. 1–

9, 2023, [Online]. Available: https://jurnal.ittc.web.id/index.php/jumri

N. Hudaningsih, S. Firda Utami, and W. A. Abdul Jabbar, “Comparison of Aknil Product Sales Forecasting

at PT. Sunthi Sepuri Using the Single Moving Average and Single Exponential Smoothing Methods” Jurnal

Informatika, Teknologi dan Sains, vol. 2, no. 1, pp. 15–22, 2020, doi: 10.51401/jinteks.v2i1.554.

M. Sofyan, R. Danni, F. Nurdiyansyah, and F. Marisa, “FORECASTING CHICKEN EGG SALES USING

THE ARIMA METHOD,” vol. 9, no. 3, pp. 3791–3796, 2025.

L. S. Memory, D. A. N. Gated, and R. Unit, “Forecasting the rupiah exchange rate against the US dollar using

the long short-term memory method and gated recurrent units 1,2,3,” vol. 14, pp. 13–22, 2025, doi:

10.14710/j.gauss.14.1.13-22.

Ines Saraswati Machfiroh and Cahaya Ayu Ramadhan, “Sales Forecasting of 220ml Cup Products Using the

Least Square Method at PT. Panen Embun Kemakmuran in 2022,” Jurnal MSA ( Matematika dan Statistika

serta Aplikasinya), vol. 10, no. 2, pp. 17–24, 2022, doi: 10.24252/msa.v10i2.27870.

R. Janah, A. Isro, A. Alfan, M. Nurul Alamin, and S. Sarwinda Mas Ayu, “Corn Harvest Forecasting in

Solokuro District Using the Trend Moment Method,” JurnalMatematika & Sains, vol. 1, no. 2, pp. 65–74,2021.

Downloads

Published

2025-12-31

How to Cite

Sales Forecasting Analysis Using Fuzzy Time Series and Simple Linear Regression Methods at Toko Ari. (2025). Indonesian Journal of Data and Science, 6(3), 473-480. https://doi.org/10.56705/ijodas.v6i3.368