Classification of Gamelan Selonding Music Using Convolutional Neural Network

Authors

  • Ni Putu Diah Pradnya Savitri Institut Bisnis dan Teknologi Indonesia
  • Anak Agung Gde Bagus Ariana Institut Bisnis dan Teknologi Indonesia
  • Ni Kadek Nita Noviani Pande Institut Bisnis dan Teknologi Indonesia
  • I Made Dwi Putra Asana Institut Bisnis dan Teknologi Indonesia
  • I Gusti Agung Indrawan Institut Bisnis dan Teknologi Indonesia

DOI:

https://doi.org/10.56705/ijodas.v6i3.358

Keywords:

Gamelan Selonding, CNN, MFCC, CQT, Audio Classification, Cultural Preservation

Abstract

Introduction: Balinese Selonding gamelan is an endangered sacred repertoire, and automatic recognition of its musical pieces can support documentation and preservation. Method: This study investigates the automatic classification of Selonding gamelan music using a Convolutional Neural Network (CNN). The dataset consists of 10 traditional Selonding compositions. Recordings were segmented into fixed 15-second excerpts, converted to WAV, normalized, and transformed into time–frequency features using two approaches: Mel-Frequency Cepstral Coefficients (MFCC) and Constant-Q Transform (CQT). A CNN-based classifier was trained and evaluated using 5-fold cross-validation for each feature representation. Results: The MFCC-based model achieved stable high performance, with mean accuracy of 94.67% (±2.11%), mean precision of 94.97% (±1.90%), mean recall of 94.67% (±2.11%), and mean F1-score of 94.63% (±2.12%) across folds. In contrast, the CQT-based model performed notably worse, reaching only 58.04% mean accuracy and 53.28% mean F1-score, with large variance across folds. These results indicate that MFCC features capture the discriminative timbral characteristics of Selonding more effectively than CQT under the current experimental setting. Conclusion: Overall, the findings show that a CNN trained on MFCC features can reliably distinguish Selonding compositions using only short (15-second) audio segments, despite limited data. This suggests that deep learning is a feasible strategy for indexing, retrieval, and long-term preservation of Balinese gamelan repertoires.

Downloads

Download data is not yet available.

References

[1] Y. R. Sidjabat dan J. D. Krishnanandayani, “the Transformation of Balinese Gamelan: Authenticity and Heritage Politics in Digital Platforms,” Proceeding Bali-Bhuwana Waskita Glob. Art Creat. Conf., vol. 4, hal. 408–414, 2024, doi: 10.31091/bbwp.v4i1.610.
[2] K. D. Pradnyani, “Sistem Klasifikasi Gamelan Bali Berbasis Web a Website-Based Balinese Classification System of the Balinese gamelan,” vol. 16, no. 2, hal. 82–90, 2023.
[3] S. P. Collins et al., “Sonic Traditions: Exploring The Gamelan’s Influence On Contemporary Indonesian Music,” vol. 10, no. 19, hal. 167–186, 2021.
[4] I. K. Ardana, “Re-Actualization Balinese Gamelan Harmony for Renewal Knowlegde of the Balinese Music,” Int. J. Creat. Arts Stud., vol. 8, no. 1, hal. 51–69, 2021, doi: 10.24821/ijcas.v8i1.5514.
[5] K. A. W. Pradana, I. W. Rai S, dan I. W. Suherta, “The The Musicality of Gamelan Gong Kebyar Mepacek as a North Bali Traditional Music Identity,” Randwick Int. Soc. Sci. J., vol. 4, no. 2, hal. 241–253, 2023, doi: 10.47175/rissj.v4i2.653.
[6] I. W. Rai, N. M. Ruastiti, G. Y. K. Pradana, dan Y. Wafom, “Gamelan Selonding As Part of an Essential Instrument in the Sustainment of the Sacred Art Activities of the Batur Indigenous People in Kintamani, Bali,” J. Law Sustain. Dev., vol. 11, no. 5, hal. 1–22, 2023, doi: 10.55908/sdgs.v11i5.1006.
[7] V. Wulansari dan S. Maisy, “Kelestarian Budaya Dan Adat Di Desa Tengan Pegringsingan Karangasem Bali,” J. Fash., vol. 1, no. 2, hal. 5, 2023, [Daring]. Tersedia pada: https://jurnal.idbbali.ac.id/index.php/fashionista
[8] K. A. T. Paramitha, I. W. D. Putra, dan N. W. Mudiasih, “Pengembangan Aplikasi Android Pembelajaran Gamelan Selonding Gaya Tenganan,” J. Music Sci. Technol. Ind., vol. 5, no. 2, hal. 223–239, 2022, doi: 10.31091/jomsti.v5i2.2134.
[9] A. Agung, G. Agung, dan R. Putra, “Kemampuan Menabuh Gending Rejang Manda Dalam Gamelan Selonding Gaya Bebandem Oleh Komunitas Selonding Bali Aga Banjar Pande Tunggak Bebandem Karangasem Tahun 2022,” vol. II, no. April, 2022, doi: 10.5281/zenodo.7302722.
[10] I. W. Y. M. Putra, “Development Of Sekaa Selonding Manik Selukat Banjar Tunjuk Kelod | Pembinaan Sekaa Selonding Manik Selukat Banjar Tunjuk Kelod,” GHURNITA J. Seni Karawitan, vol. 3, no. 4, hal. 372–378, 2023, doi: 10.59997/jurnalsenikarawitan.v3i4.2495.
[11] I. W. Sudiarsa, “Gamelan Salonding Masuk Hotel Studi Kasus: Perkembangan Gamelan Salonding di Desa Tenganan Pegringsingan, Kecamatan Manggis …,” Widyanatya, vol. 3, hal. 31–36, 2021, [Daring]. Tersedia pada: https://ejournal.unhi.ac.id/index.php/widyanatya/article/view/1681%0Ahttps://ejournal.unhi.ac.id/index.php/widyanatya/article/download/1681/1005
[12] I. G. Harsemadi, “Perbandingan Kinerja Algoritma K-NN dan SVM dalam Sistem Klasifikasi Genre Musik Gamelan Bali,” INFORMATICS Educ. Prof. J. Informatics, vol. 8, no. 1, hal. 1, 2023, doi: 10.51211/itbi.v8i1.2417.
[13] Firman, Firdaus, M. Halim, Alfalah, dan Sriyanto, “Analisis Pola Musik Karawitan di Tengah Era Digital,” Indones. J. Comput. Sci., vol. 13, no. 2, hal. 3157–3167, 2024, doi: 10.33022/ijcs.v13i2.3783.
[14] W. Vitale dan W. Sethares, “Balinese Gamelan Tuning: The Toth Archives,” Anal. Approaches to World Music, vol. 9, no. 2, 2021.
[15] V. L. Hardjanto dan Wahyono, “Audio Enhancement for Gamelan Instrument Recognition using Spectral Subtraction,” Eng. Technol. Appl. Sci. Res., vol. 15, no. 2, hal. 22042–22048, 2025, doi: 10.48084/etasr.10181.
[16] Y. Mardiati, . W., dan D. R. Puguh, “Making Connection: Integrating Gamelan Music into Social Studies Classroom,” Int. J. Res. Rev., vol. 8, no. 7, hal. 236–244, 2021, doi: 10.52403/ijrr.20210733.
[17] Z. Liu, “Audio Feature Extraction and Classification Technology Based on Convolutional Neural Network,” J. Electr. Syst., hal. 1425–1431, 2024.
[18] R. Jahangir, M. A. Nauman, R. Alroobaea, J. Almotiri, M. M. Malik, dan S. M. Alzahrani, “Deep Learning-based Environmental Sound Classification Using Feature Fusion and Data Enhancement,” Comput. Mater. Contin., vol. 74, no. 1, hal. 1069–1091, 2023, doi: 10.32604/cmc.2023.032719.
[19] I. G. Agung, C. Wijaya, I. G. A. Indrawan, I. N. A. Fajaraditya, dan I. Gusti, “Classification Of Bougainvillea Flower Varieties Using Variant Of CNN : Resnet50,” vol. 6, no. 2, hal. 154–162, 2025.
[20] M. Oktaviani, T. E. Sutanto, dan M. Mahmudi, “Klasifikasi Usia Berdasarkan Suara Dengan Ekstraksi Ciri Mel Frequency Cepstral Coefficients Menggunakan Support Vector Machine,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 4, no. 4, hal. 901–907, 2023, [Daring]. Tersedia pada: https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/240%0Afiles/5264/Oktaviani et al. - 2023 - Klasifikasi Usia Berdasarkan Suara Dengan Ekstraks.pdf
[21] G. Abou Haidar, “Music Genre Classification Using Adam Algorithm of Convolutional Neural Network,” Int. J. Inf. Commun. Technol., vol. 10, no. 2, hal. 152–160, 2024, doi: 10.21108/ijoict.v10i2.978.
[22] R. Luis dan N. Rokhman, “Traditional Music Regional Classification using Convolutional Neural Network (CNN),” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 4, hal. 379, 2022, doi: 10.22146/ijccs.73910.
[23] R. Soerkarta, S. Aras, dan A. N. Aswad, “Hyperparameter Optimization of CNN Classifier for Music Genre Classification,” J. RESTI, vol. 7, no. 5, hal. 1205–1210, 2023, doi: 10.29207/resti.v7i5.5319.
[24] Royan Hisyam Rafliansyah, Basuki Rahmat, dan Chrystia Aji Putra, “Klasifikasi Suara Instrumen Musik Tiup Menggunakan Metode Convolutional Neural Network,” Merkurius J. Ris. Sist. Inf. dan Tek. Inform., vol. 2, no. 4, hal. 01–09, 2024, doi: 10.61132/merkurius.v2i4.119.
[25] S. Y. Yusdiantoro dan T. B. Sasongko, “Implementasi Algoritma MFCC dan CNN dalam Klasifikasi Makna Tangisan Bayi,” Indones. J. Comput. Sci., vol. 12, no. 4, hal. 1957–1968, 2023, doi: 10.33022/ijcs.v12i4.3243.
[26] S. Ihsanti et al., “Klasifikasi Genus Burung Hantu Berdasarkan Suara Menggunakan Convolutional Neural Network,” vol. 11, no. 4, hal. 4532–4538, 2024.
[27] R. F. Fadhillah dan R. Sumiharto, “Klasifikasi Suara Untuk Memonitori Hutan Berbasis Convolutional Neural Network,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 13, no. 1, 2023, doi: 10.22146/ijeis.79536.
[28] F. Ferdiawan dan B. Hartono, “Deteksi Suara Chord Piano Menggunakan Metode,” vol. 5, no. 1, hal. 62–68, 2022.
[29] F. Wolf-Monheim, “Spectral and Rhythm Features for Audio Classification with Deep Convolutional Neural Networks,” 2024, [Daring]. Tersedia pada: http://arxiv.org/abs/2410.06927
[30] Z. Meng dan W. Chen, “Automatic music transcription based on convolutional neural network, constant Q transform and MFCC,” J. Phys. Conf. Ser., vol. 1651, no. 1, 2020, doi: 10.1088/1742-6596/1651/1/012192.
[31] J. Yang et al., “A Deep-Learning Framework with Multi-Feature Fusion and Attention Mechanism for Classification of Chinese Traditional Instruments,” Electron., vol. 14, no. 14, hal. 1–18, 2025, doi: 10.3390/electronics14142805.
[32] H. Train, “applied sciences A Binaural MFCC-CNN Sound Quality Model of,” 2022.
[33] Pratibha Rashmi dan Manu Pratap Singh, “Convolution neural networks with hybrid feature extraction methods for classification of voice sound signals,” World J. Adv. Eng. Technol. Sci., vol. 8, no. 2, hal. 110–125, 2023, doi: 10.30574/wjaets.2023.8.2.0083.
[34] H. C. Chu, Y. L. Zhang, dan H. C. Chiang, “A CNN Sound Classification Mechanism Using Data Augmentation,” Sensors, vol. 23, no. 15, 2023, doi: 10.3390/s23156972.
[35] N. Asanah dan I. Pratama, “Deep Learning Approach for Music Genre Classification using Multi-Feature Audio Representations,” Sistemasi, vol. 14, no. 5, hal. 2045, 2025, doi: 10.32520/stmsi.v14i5.5369.
[36] A. Wirdiani, S. N. Machetho, I. K. G. D. Putra, M. Sudarma, R. S. Hartati, dan H. A. Ferdian, “Improvement Model for Speaker Recognition using MFCC-CNN and Online Triplet Mining,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 2, hal. 420–427, 2024, doi: 10.18517/ijaseit.14.2.19396.

Downloads

Published

2025-12-31

How to Cite

Classification of Gamelan Selonding Music Using Convolutional Neural Network. (2025). Indonesian Journal of Data and Science, 6(3), 462-472. https://doi.org/10.56705/ijodas.v6i3.358