Classification of Employee Attendance Categories Using the Gradient Boosted Trees Algorithm
DOI:
https://doi.org/10.56705/ijodas.v6i3.301Keywords:
Employee Attendance, Gradient Boosted Trees Algorithm, Machine Learning, Data MiningAbstract
Employee attendance is a crucial factor in human resource management as it affects productivity and operational efficiency. However, the recording and analysis of employee attendance often encounter challenges, particularly in terms of the accuracy and effectiveness of the systems used. This study aims to develop an employee attendance classification model using the Gradient Boosted Trees algorithm to improve the accuracy of grouping attendance categories such as Present, Permission, Sick, Leave, and Absent into attendance level categories: High, Medium, and Low. The research method includes collecting employee attendance data throughout the year 2024. The model evaluation is carried out using metrics such as accuracy, precision, recall, and the confusion matrix. The results indicate that the developed model achieves an accuracy of 100.00%, with a mean precision of 100.00% and a mean recall of 100.00%.
Downloads
References
[2] D. Darmawan, R. Hidayat, and A. Kurniawan, “Pengembangan Sistem Absensi dan Informasi Karyawan Berbasis Web,” vol. 1, no. 6, pp. 928–933, 2024.
[3] S. Darma, Y. Yusman, and J. Hendrawan, “Aalisis Data Tingkat Kehadiran Pegawai denganMenggunakan Clustering K-Means Pada DinasPekerjaan Umum dan Penataan RuangKabupaten Langkat,” Minfo Polgan, vol. 13, N. 1, Agustus 2024, doi : https://doi.org/10.33395/jmp.v13i1.13958e-ISSN : 2797-3298p.
[4] H. A. Setyadi and S. Sundari, “Sistem Informasi Manajemen Kehadiran Dan Jam Kerja Karyawan Untuk Kelengkapan Perhitungan Gaji Karyawan,” Indones. J. Comput. Sci., vol. 1, no. 1, pp. 28–33, 2022, doi: 10.31294/ijcs.v1i1.1114.
[5] Jihan Asa Noyari et al, “Optimasi Kinerja Sistem Informasi Manajemen KampusMenggunakan Teknik Data Mining,” MENTARI (Manajemen, Pendidikan dan Teknologi Informasi), vol. 3, No. 1, pp. 52−63, September 2024.
[6] W. A. Wahyuni and S. Saepudin, “Penerapan Data Mining Clustering Untuk Mengelompokkan Berbagai Jenis Merk Mesin Cuci,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform. Univ. Nusa Putra), vol. 1, no. 1, pp. 306–313, 2021.
[7] F. Sodik Pamungkasa et al, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” PRISMA, Vol. 3, 689-694, 2020.
[8] S. Suliman, “Implementasi Data Mining Terhadap Prestasi Belajar Mahasiswa Berdasarkan Pergaulan dan Sosial Ekonomi Dengan Algoritma K-Means Clustering,” Simkom, vol. 6, no. 1, pp. 1–11, 2021, doi: 10.51717/simkom.v6i1.48.
[9] Panji Bimo Nugroho Setio et all, “Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” PRISMA 2020, vol. 3, 64-71.
[10] Ainurrohmah, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,” PRISMA 2021, vol. 4, 493-499, 2021.
[11] N. Hidayati et al, “Penerapan Algoritma Klasterisasi dan Klasifikasi pada Tingkat Kepentingan Sistem Pembelajaran di Universitas Terbuka,” JURNAL SWABUMI, Vol.8 No.2 September 2020, pp. 134~142.
[12] S. Elsa Suryana et all, “PENERAPAN GRADIENT BOOSTING DENGAN HYPEROPT UNTUK MEMPREDIKSI KEBERHASILAN TELEMARKETING BANK,” GAUSSIAN, volume 10, nomor 4, Tahun 2021.
[13] Atika Juhaedah ALifah, Sudin Saepudin, and Carti Irawan, "IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING DALAM MENGANALISIS KEPUASAN MASYARAKAT MENGENAI PELAYANAN PUBLIK,” Jurnal Teknik Informatika (JUTIF), Vol. 5, No. 4, August 2024, pp. 487-496, DOI: https://doi.org/10.52436/1.jutif.2024.5.4.2125.
[14] T. Zulhaq Jasman et all, “Analisis Algoritma Gradient Boosting, AdaBoostdan CatBoost dalam Klasifikasi Kualitas Air,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, No. 2, Agustus 2022.
[15] A. N. Z. Hidayah and A. F. Rozi “Penerapan Data Mining Dalam Menentukan Kinerja Karyawan Terbaik Dengan Menggunakan Metode Algoritma C4.5,” JISAI, vol. 1, no. 2, (Mei) (2021).
[16] S. Wahyuni and M. Sulaeman, “Penerapan Algoritma Deep Learning Untuk Sistem Absensi Kehadiran Deteksi Wajah Di PT Karya Komponen Presisi,” J. Inform. SIMANTIK, vol. 7, no. 1, pp. 5–6, 2022, [Online]. Available: https://simantik.pancasakti.ac.id/index.php/simantik/article/view/127
[17] A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima Pip,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp.
[18] E. Firasari et al., “Kombinasi K-Nn Dan Gradient Boosted Trees Untuk Klasifikasi Penerimaan Program Bantuan Sosial,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1231–1236, 2020, doi: 10.25126/jtiik.202073087.
[19] Arya Wijaya, Ahmad Faqih, Dodi Solihudin, Cep Lukman Rohmat, and Sandy Eka Permana, "PENERAPAN ASSOCIATION RULES MENGGUNAKAN ALGORITMA APRIORI UNTUK IDENTIFIKASI POLA PEMBELIAN," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7 No. 6, 2023.
[20] Fauzan, and Didi Juardi, "Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode ALgoritma NaïveBayes," Jurnal Ilmiah Informatika (JIF), Vol. 09 No. 02 (2021).
[21] A. F. Nugraha, Y. Pristyanto, and I. Pratama, “PENANGANAN MISSING VALUES UNTUK MENINGKATKAN KINERJA MODEL MACHINE LEARNING PADA DATA TELEMARKETING,” Jurnal Pseudocode, volume vii, Nomor 2, September 2020.
[22] R. Nurhidayat and K. E. Dewi, “Penerapan Algoritma K-Nearest Neighbor Dan Fitur Ekstraksi N-Gram Dalam Analisis Sentimen Berbasis Aspek,” Komputa J. Ilm. Komput. dan Inform., vol. 12, no. 1, pp. 91–100, 2023, doi: 10.34010/komputa.v12i1.9458.
[23] M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.
[23] D. A. Maqfiroh and Z. Fatah, “K-NEAREST NEIGHBOR UNTUK MEMPREDIKSI KONDISI CUACA MENGGUNAKAN RAPIDMINER,” Jurnal Sains dan Sistem Teknologi Informasi (SANDI), vol. 6. no. 2. November 2024.
[25] Fauziah and A. S. Ramadhantya, “Penggunaan Rapidminer Untuk Memprediksi Kelulusan Mahasiswa Dengan Algorithm Naive Bayes,” vol. 10, no. 1, Juni 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mutia Safitri, Sudin Saepudin, Carti Irawan, Mupaat

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors retain copyright and full publishing rights to their articles. Upon acceptance, authors grant Indonesian Journal of Data and Science a non-exclusive license to publish the work and to identify itself as the original publisher.
Self-archiving. Authors may deposit the submitted version, accepted manuscript, and version of record in institutional or subject repositories, with citation to the published article and a link to the version of record on the journal website.
Commercial permissions. Uses intended for commercial advantage or monetary compensation are not permitted under CC BY-NC 4.0. For permissions, contact the editorial office at ijodas.journal@gmail.com.
Legacy notice. Some earlier PDFs may display “Copyright © [Journal Name]” or only a CC BY-NC logo without the full license text. To ensure clarity, the authors maintain copyright, and all articles are distributed under CC BY-NC 4.0. Where any discrepancy exists, this policy and the article landing-page license statement prevail.










