Bayesian Analysis of Two Parameter Weibull Distribution Using Different Loss Functions
Abstract
This paper focuses on the Bayesian technique to estimate the parameters of the Weibull distribution. At this location, we use both informative and non-informative priors. We calculate the estimators and their posterior risks using different asymmetric and symmetric loss functions. Bayes estimators do not have a closed form under these loss functions. Therefore, we use an approximation approach established by Lindley to get the Bayes estimates. A comparative analysis is conducted to compare the suggested estimators using Monte Carlo simulation based on the related posterior risk. We also analyze the impact of distinct loss functions when using various priors.
Downloads
References
W. Weibull, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech., vol. 18, no. 3, pp. 293–297, Sep. 1951, doi: 10.1115/1.4010337.
H. Rinne, The Weibull Distribution. Chapman and Hall/CRC, 2008, doi: 10.1201/9781420087444.
A. Banerjee and D. Kundu, “Inference Based on Type-II Hybrid Censored Data From a Weibull Distribution,” IEEE Trans. Reliab., vol. 57, no. 2, pp. 369–378, Jun. 2008, doi: 10.1109/TR.2008.916890.
Ahmed, “Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution,” J. Math. Stat., vol. 6, no. 2, pp. 100–104, Apr. 2010, doi: 10.3844/jmssp.2010.100.104.
B. N. Pandey, N. Dwivedi, and P. Bandyopadhyay, “Comparison Between Bayesian and Maximum Likelihood Estimation of Scale Parameter in Weibull Distribution With Known Shape Under Linex Loss Function,” J. Sci. Res., vol. 55, no. 1, pp. 163–172, 2011.
S.-R. Huang and S.-J. Wu, “Bayesian estimation and prediction for Weibull model with progressive censoring,” J. Stat. Comput. Simul., vol. 82, no. 11, pp. 1607–1620, Nov. 2012, doi: 10.1080/00949655.2011.588602.
C. B. Guure and N. A. Ibrahim, “Bayesian Analysis of the Survival Function and Failure Rate of Weibull Distribution with Censored Data,” Math. Probl. Eng., vol. 2012, no. 1, Jan. 2012, doi: 10.1155/2012/329489.
S. Mohsin Ali, M. Aslam, S. Mohsin Ali Kazmi, I. Ahmad, and S. Haider Shah, “Bayesian Estimation for Parameters of the Weibull Distribution,” Sci. Int., vol. 26, no. 5, pp. 1915–1920, 2014.
E. Köksal Babacan and S. Kaya, “A simulation study of the Bayes estimator for parameters in Weibull distribution,” Commun. Fac. Sci. Univ. Ankara Ser. A1Mathematics Stat., pp. 1664–1674, Apr. 2019, doi: 10.31801/cfsuasmas.455276.
F. Yanuar, H. Yozza, and R. V. Rescha, “Comparison of Two Priors in Bayesian Estimation for Parameter of Weibull Distribution,” Sci. Technol. Indones., vol. 4, no. 3, p. 82, Jul. 2019, doi: 10.26554/sti.2019.4.3.82-87.
A. YILMAZ, M. KARA, and H. AYDOĞDU, “A study on comparisons of Bayesian and classical parameter estimation methods for the two-parameter Weibull distribution,” Commun. Fac. Sci. Univ. Ankara Ser. A1Mathematics Stat., pp. 576–602, Jan. 2020, doi: 10.31801/cfsuasmas.606890.
M. Aslam, “An application of prior predictive distribution to elicit the prior density,” J. Stat. Theory Appl., vol. 2, no. 1, pp. 70–83, 2003.
J. Xu, “Bayesian Method for Determining the Three Parameters of Weibull Distribution,” J. Phys. Conf. Ser., vol. 2890, no. 1, p. 012014, Nov. 2024, doi: 10.1088/1742-6596/2890/1/012014.
M. Frolov, S. Tanchenko, and L. Ohluzdina, “Parameter Estimation of the Weibull Distribution in Modeling the Reliability of Technical Objects,” J. Eng. Sci., vol. 11, no. 1, pp. A1–A10, 2024, doi: 10.21272/jes.2024.11(1).a1.
H. Jeffreys, “An invariant form for the prior probability in estimation problems,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci., vol. 186, no. 1007, pp. 453–461, Sep. 1946, doi: 10.1098/rspa.1946.0056.
S. K. Sinha and J. A. Sloan, “Bayes estimation of the parameters and reliability function of the 3-parameter Weibull distribution,” IEEE Trans. Reliab., vol. 37, no. 4, pp. 364–369, 1988, doi: 10.1109/24.9840.
A. . Legendre, “New Methods for Determining the Orbits of Comets,” Append. Method Least Squares, 1806.
J. G. Norstrom, “The use of precautionary loss functions in risk analysis,” IEEE Trans. Reliab., vol. 45, no. 3, pp. 400–403, 1996, doi: 10.1109/24.536992.
F. Soliman and K. Spooner, “Strategies for implementing knowledge management: role of human resources management,” J. Knowl. Manag., vol. 4, no. 4, pp. 337–345, Dec. 2000, doi: 10.1108/13673270010379894.
D. V. Lindley, “Approximate Bayesian methods,” Trab. Estad. Y Investig. Oper., vol. 31, no. 1, pp. 223–245, Feb. 1980, doi: 10.1007/BF02888353.

Authors retain copyright and full publishing rights to their articles. Upon acceptance, authors grant Indonesian Journal of Data and Science a non-exclusive license to publish the work and to identify itself as the original publisher.
Self-archiving. Authors may deposit the submitted version, accepted manuscript, and version of record in institutional or subject repositories, with citation to the published article and a link to the version of record on the journal website.
Commercial permissions. Uses intended for commercial advantage or monetary compensation are not permitted under CC BY-NC 4.0. For permissions, contact the editorial office at [editorial email/contact form].
Legacy notice. Some earlier PDFs may display “Copyright © [Journal Name]” or only a CC BY-NC logo without the full license text. For the avoidance of doubt, authors hold copyright, and all articles are distributed under CC BY-NC 4.0. Where any discrepancy exists, this policy and the article landing-page license statement prevail.