Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penderita Penyakit Jantung
Abstract
Di Indonesia telah terjadi pergeseran kejadian penyakit jantung dan pembuluh darah dari urutan ke-l0 tahun 1980 menjadi urutan ke-8 tahun 1986. Sedangkan penyebab kematian tetap menduduki peringkat ke-3. Dalam proses pengklasifikasian ini untuk mengetahui apakah termaksud penyakit jantung atau non penyakit jantung dengan mengunakan rumus dari metode K-Nearest Neighbor dan Naive Bayes Classifier yang menggunakan library scikit learn. Dalam proses penelitian ini kita melakukan perhitungan hasil nilai performa yang terdiri dari akurasi, presisi, recall dan f-measure pada dataset penyakit jantung. Menggunakan metode klasifikasi yg memiliki hasil uji performa tertinggi/terbaik.
Berdasarkan hasil pengujian, didapatkan tingkat akurasi pada metode K-Nearest Neighbor sebesar 67%, presisi 65%, recall 73%, dan f-measure 96% pada nilai K=250 dan metode jarak Manhattan, tingkat akurasi pada metode jarak Euclidean sebesar 65%, presisi 65%, recall 69%, dan f-measure 67% pada nilai K=250 sedangkan pada metode Naïve Bayes Classifier tingkat akurasi yang didapatkan sebesar 58%, presisi 90%, recall 55% , dan f-measure 68%. Performa metode klasifikasi terbaik pada dataset Penyakit jantung yaitu metode KNN (K-Nearest Neighbor).
Downloads
References
A. Hadi, “Faktor Risiko Terjadinya Penyakit Jantung Koroner Pada Pasien Rumah Sakit Umum Meuraxa Banda Aceh (Risk factors of coronary heart disease in Meuraxa hospital of Banda Aceh),” J. Action Aceh Nutr. Journal, 2(1), 32–42, 2017.
D. Ramli and Y. Karan, “Anatomi dan Fisiologi Kompleks Mitral,” J. Kesehat. Andalas, pp. 103–112, 2018.
A. A. Karim, H. Azis, and Y. Salim, “Salim, “Kinerja Metode C4.5 dalam Penyaluran Bantuan Dana Bencana 1,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf, vol. 3, pp. 84–87, 2018.
H. Azis, R. D. Mallongi, D. Lantara, and Y. Salim, “Comparison of Floyd-Warshall Algorithm and Greedy Algorithm in Determining the Shortest Route,” Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT, pp. 294–298, 2018.
N. Fadhillah, H. Azis, and D. Lantara, “Validasi Pencarian Kata Kunci Menggunakan Algoritma Levenshtein Distance Berdasarkan Metode Approximate String Matching,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf, vol. 1, pp. 3–7.
A. Fitria and H. Azis, “Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf, vol. 3, pp. 102–106, 2018.
M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm, vol. 11, pp. 269–274, 2019.
A. A. Karim, H. Azis, and Y. Salim, “Kinerja Metode C4.5 dalam Penyaluran Bantuan Dana Bencana 1,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 84–87, 2018.
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020.
Hasran, “Klasifikasi Penyakit Jantung Menggunakan Metode K-Nearest Neighbor,” Indones. J. Data Sci., vol. 1, no. 1, pp. 1–4, 2020.
D. Susanti, “Analisis Modifikasi Metode Playfiar Cipher Dalam Pengamanan Data,” Indones. J. Data Sci., vol. 1, no. 1, pp. 1–80, 2020.
H. Nursan and Muslim, “Penerapan Metode Digital Watermarking dan Privilege pada Dokumen Skripsi,” Indones. J. Data Sci., vol. 1, no. 1, pp. 19–22, 2020.
A. Maulida, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020.
F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020.

Copyright (c) 2020 Indonesian Journal of Data and Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- The work is not under consideration for publication elsewhere.
- The work has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with Indonesian Journal of Data and Science agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.