Performance Comparison Analysis of Classifiers on Binary Classification Dataset

  • Rahmat Fuadi Syam Universitas Pancasakti
  • Rahmadani Universitas Muslim Indonesia

Keywords: Random Forest Classifier, Decision Tree, Naive Bayes, Support Vector Machine, Binary Dataset, Classification, Performance Comparison

Abstract

In this study, we compared the performance of Random Forest Classifier and Decision Tree using classification evaluation methods. The results showed that Random Forest Classifier had a higher overall accuracy rate but also produced more outliers. On the other hand, Decision Tree demonstrated consistency in classification with fewer outliers. These findings provide insights into the trade-off between accuracy and consistency when selecting the appropriate classification method. Furthermore, further research is needed to understand the impact of outliers on classification performance and to take appropriate steps in addressing them.

Downloads

Download data is not yet available.

References

H. Tvedten, “Classification and laboratory evaluation of anemia,” Schalm’s Vet. Hematol., 2022, doi: 10.1002/9781119500537.ch25.

Nurul A’ayunnisa, Y. Salim, and H. Azis, “Analisis Performa Metode Gaussian Naïve Bayes untuk Klasifikasi Citra Tulisan Tangan Karakter Arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: 10.56705/ijodas.v3i3.54.

H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.

A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. Dan Sist. …, 2022, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2048

R. Ridho and H. Hendra, “Klasifikasi Diagnosis Penyakit Covid-19 Menggunakan Metode Decision Tree,” JUST IT J. Sist. Informasi, Teknol. …, 2022, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/article/view/13594

A. Z. Zami, O. Nurdiawan, and ..., “Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree,” J. Sist. …, 2022, [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/JSON/article/view/3892

R. Fitriawanti, I. Cholissodin, and R. K. Dewi, “Klasifikasi dan Rekomendasi Jurusan Kuliah Bagi Pelajar SMA Menggunakan Algoritme Naïve Bayes -WP,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 4914–4922, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3129

K. Gupta, N. Jiwani, and N. Afreen, “A Combined Approach of Sentimental Analysis Using Machine Learning Techniques.,” Rev. d’Intelligence Artif., 2023, [Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=0992499X&AN=163153519&h=oW2E1RbY5Z%2FNmydQmFIt2ykqVNxazgS8gibi33%2Fq9zzG9ZcI3Zi2WHuhIBHf2LActasi%2BlBMHmR6TsmZorhDIQ%3D%3D&crl=c

L. Saiman and R. Satra, “Analisis performa metode Support Vector Machine untuk klasifikasi dataset aroma tahu berformalin,” Indones. J. Data Sci., vol. 2, no. 2, pp. 50–61, 2021, doi: 10.56705/ijodas.v2i2.28.

F. T. Admojo and S. R. Jabir, “Analisis performa metode Naïve Bayesh Classifier pada Electronic Nose dalam identifikasi formalin pada tahu,” Indones. J. Data Sci., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.

A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.

S. Park, J. Kim, and J. Canny, “An Embedding-Dynamic Approach to Self-supervised Learning,” Proc. …, 2023, [Online]. Available: https://openaccess.thecvf.com/content/WACV2023/html/Moon_An_Embedding-Dynamic_Approach_to_Self-Supervised_Learning_WACV_2023_paper.html

Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indones. J. Data Sci., vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.

U. Barman and R. D. Choudhury, “Soil texture classification using multi class support vector machine,” Inf. Process. Agric., vol. 7, no. 2, pp. 318–332, 2020, doi: 10.1016/j.inpa.2019.08.001.

F. Ramzan et al., “A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual Neural Networks,” J. Med. Syst., vol. 44, no. 2, 2020, doi: 10.1007/s10916-019-1475-2.

S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.

H. Fan, Y. Mao, H. Wang, Y. Yu, X. Wu, and Z. Zhang, “Performance comparation of MEA and EDA in electrochemically-mediated amine regeneration for CO2 capture,” Sep. Purif. …, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1383586623001909

F. Li, Y. Qiao, H. Zhao, S. He, and ..., “Analysis of SEMI EDA standards for semiconductor equipment data acquisition,” … Conf. Comput. …, 2022, doi: 10.1117/12.2659134.short.

M. Jena, R. K. Behera, and S. Dehuri, “Hybrid decision tree for machine learning: A big data perspective,” Adv. Mach. Learn. Big …, 2022, doi: 10.1007/978-981-16-8930-7_9.

R. S. Patil and S. R. Kolhe, “Supervised classifiers with TF-IDF features for sentiment analysis of Marathi tweets,” Social Network Analysis and Mining. Springer, 2022. doi: 10.1007/s13278-022-00877-w.

Y. Wang, H. Chen, Y. Fan, W. Sun, and ..., “Usb: A unified semi-supervised learning benchmark for classification,” Adv. …, 2022, [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/hash/190dd6a5735822f05646dc27decff19b-Abstract-Datasets_and_Benchmarks.html

B. Panda, C. R. Panigrahi, and B. Pati, “Exploratory data analysis and sentiment analysis of drug reviews,” Computación y Sistemas. scielo.org.mx, 2022. [Online]. Available: https://www.scielo.org.mx/scielo.php?pid=S1405-55462022000301191&script=sci_arttext

H. Pitroda, “A Proposal of an Interactive Web Application Tool QuickViz: To Automate Exploratory Data Analysis,” 2022 IEEE 7th Int. Conf. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9824068/

M. Krishna Monika, N. Arun Vignesh, C. Usha Kumari, M. N. V. S. S. Kumar, and E. Laxmi Lydia, “Skin cancer detection and classification using machine learning,” Mater. Today Proc., vol. 33, no. xxxx, pp. 4266–4270, 2020, doi: 10.1016/j.matpr.2020.07.366.

L. Song, “Canny optimisation of the dynamic image colour automatic segmentation algorithm,” Int. J. Comput. Appl. …, 2022, doi: 10.1504/IJCAT.2022.127820.

D. V Kondusov and V. B. Kondusova, “Shape-Based Search Modules Permitting Repeated Use of Design Knowledge,” Russ. Eng. Res., 2022, doi: 10.3103/S1068798X22010105.

Y. T. Ng, X. Li, J. Y. Wu, and W. F. Lu, “Hybrid Classification Method for Image-based Anomaly Detection in Manufacturing Processes,” 2022 4th Int. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9976593/

A. Ghosh and A. Senthilrajan, “Comparison of machine learning techniques for spam detection,” Multimedia Tools and Applications. Springer, 2023. doi: 10.1007/s11042-023-14689-3.

H. Rahman, M. O. Faruq, T. B. A. Hai, W. Rahman, and ..., “IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh,” Journal of agriculture …. Elsevier, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666154321001691

B. Kishore, A. Yasar, Y. S. Taspinar, R. Kursun, and ..., “Computer-aided multiclass classification of corn from corn images integrating deep feature extraction,” Computational …. hindawi.com, 2022. [Online]. Available: https://www.hindawi.com/journals/cin/2022/2062944/

S. Elango, D. Haldar, and A. Danodia, “Discrimination of maize crop in a mixed Kharif crop scenario with synergism of multiparametric SAR and optical data,” Geocarto Int., 2022, doi: 10.1080/10106049.2021.1920628.

C. Boukhatem, H. Y. Youssef, and ..., “Heart disease prediction using machine learning,” 2022 Adv. Sci. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9734880/

N. Biswas, K. M. M. Uddin, S. T. Rikta, and S. K. Dey, “A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach,” Healthcare Analytics. Elsevier, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772442522000569

A. D. Goswami, G. S. Bhavekar, and P. V Chafle, “Electrocardiogram signal classification using VGGNet: a neural network based classification model,” International Journal of …. Springer, 2023. doi: 10.1007/s41870-022-01071-z.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

Published
2023-07-31
How to Cite
Rahmat Fuadi Syam, & Rahmadani. (2023). Performance Comparison Analysis of Classifiers on Binary Classification Dataset. Indonesian Journal of Data and Science, 4(2), 45-54. https://doi.org/10.56705/ijodas.v4i2.77