Performance Comparison Analysis of Classifiers on Binary Classification Dataset
Abstract
In this study, we compared the performance of Random Forest Classifier and Decision Tree using classification evaluation methods. The results showed that Random Forest Classifier had a higher overall accuracy rate but also produced more outliers. On the other hand, Decision Tree demonstrated consistency in classification with fewer outliers. These findings provide insights into the trade-off between accuracy and consistency when selecting the appropriate classification method. Furthermore, further research is needed to understand the impact of outliers on classification performance and to take appropriate steps in addressing them.
Downloads
References
H. Tvedten, “Classification and laboratory evaluation of anemia,” Schalm’s Vet. Hematol., 2022, doi: 10.1002/9781119500537.ch25.
Nurul A’ayunnisa, Y. Salim, and H. Azis, “Analisis Performa Metode Gaussian Naïve Bayes untuk Klasifikasi Citra Tulisan Tangan Karakter Arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: 10.56705/ijodas.v3i3.54.
H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, “Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.
A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. Dan Sist. …, 2022, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2048
R. Ridho and H. Hendra, “Klasifikasi Diagnosis Penyakit Covid-19 Menggunakan Metode Decision Tree,” JUST IT J. Sist. Informasi, Teknol. …, 2022, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/article/view/13594
A. Z. Zami, O. Nurdiawan, and ..., “Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree,” J. Sist. …, 2022, [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/JSON/article/view/3892
R. Fitriawanti, I. Cholissodin, and R. K. Dewi, “Klasifikasi dan Rekomendasi Jurusan Kuliah Bagi Pelajar SMA Menggunakan Algoritme Naïve Bayes -WP,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 4914–4922, 2018, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3129
K. Gupta, N. Jiwani, and N. Afreen, “A Combined Approach of Sentimental Analysis Using Machine Learning Techniques.,” Rev. d’Intelligence Artif., 2023, [Online]. Available: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=0992499X&AN=163153519&h=oW2E1RbY5Z%2FNmydQmFIt2ykqVNxazgS8gibi33%2Fq9zzG9ZcI3Zi2WHuhIBHf2LActasi%2BlBMHmR6TsmZorhDIQ%3D%3D&crl=c
L. Saiman and R. Satra, “Analisis performa metode Support Vector Machine untuk klasifikasi dataset aroma tahu berformalin,” Indones. J. Data Sci., vol. 2, no. 2, pp. 50–61, 2021, doi: 10.56705/ijodas.v2i2.28.
F. T. Admojo and S. R. Jabir, “Analisis performa metode Naïve Bayesh Classifier pada Electronic Nose dalam identifikasi formalin pada tahu,” Indones. J. Data Sci., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.
S. Park, J. Kim, and J. Canny, “An Embedding-Dynamic Approach to Self-supervised Learning,” Proc. …, 2023, [Online]. Available: https://openaccess.thecvf.com/content/WACV2023/html/Moon_An_Embedding-Dynamic_Approach_to_Self-Supervised_Learning_WACV_2023_paper.html
Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indones. J. Data Sci., vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.
U. Barman and R. D. Choudhury, “Soil texture classification using multi class support vector machine,” Inf. Process. Agric., vol. 7, no. 2, pp. 318–332, 2020, doi: 10.1016/j.inpa.2019.08.001.
F. Ramzan et al., “A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual Neural Networks,” J. Med. Syst., vol. 44, no. 2, 2020, doi: 10.1007/s10916-019-1475-2.
S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.
H. Fan, Y. Mao, H. Wang, Y. Yu, X. Wu, and Z. Zhang, “Performance comparation of MEA and EDA in electrochemically-mediated amine regeneration for CO2 capture,” Sep. Purif. …, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1383586623001909
F. Li, Y. Qiao, H. Zhao, S. He, and ..., “Analysis of SEMI EDA standards for semiconductor equipment data acquisition,” … Conf. Comput. …, 2022, doi: 10.1117/12.2659134.short.
M. Jena, R. K. Behera, and S. Dehuri, “Hybrid decision tree for machine learning: A big data perspective,” Adv. Mach. Learn. Big …, 2022, doi: 10.1007/978-981-16-8930-7_9.
R. S. Patil and S. R. Kolhe, “Supervised classifiers with TF-IDF features for sentiment analysis of Marathi tweets,” Social Network Analysis and Mining. Springer, 2022. doi: 10.1007/s13278-022-00877-w.
Y. Wang, H. Chen, Y. Fan, W. Sun, and ..., “Usb: A unified semi-supervised learning benchmark for classification,” Adv. …, 2022, [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2022/hash/190dd6a5735822f05646dc27decff19b-Abstract-Datasets_and_Benchmarks.html
B. Panda, C. R. Panigrahi, and B. Pati, “Exploratory data analysis and sentiment analysis of drug reviews,” Computación y Sistemas. scielo.org.mx, 2022. [Online]. Available: https://www.scielo.org.mx/scielo.php?pid=S1405-55462022000301191&script=sci_arttext
H. Pitroda, “A Proposal of an Interactive Web Application Tool QuickViz: To Automate Exploratory Data Analysis,” 2022 IEEE 7th Int. Conf. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9824068/
M. Krishna Monika, N. Arun Vignesh, C. Usha Kumari, M. N. V. S. S. Kumar, and E. Laxmi Lydia, “Skin cancer detection and classification using machine learning,” Mater. Today Proc., vol. 33, no. xxxx, pp. 4266–4270, 2020, doi: 10.1016/j.matpr.2020.07.366.
L. Song, “Canny optimisation of the dynamic image colour automatic segmentation algorithm,” Int. J. Comput. Appl. …, 2022, doi: 10.1504/IJCAT.2022.127820.
D. V Kondusov and V. B. Kondusova, “Shape-Based Search Modules Permitting Repeated Use of Design Knowledge,” Russ. Eng. Res., 2022, doi: 10.3103/S1068798X22010105.
Y. T. Ng, X. Li, J. Y. Wu, and W. F. Lu, “Hybrid Classification Method for Image-based Anomaly Detection in Manufacturing Processes,” 2022 4th Int. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9976593/
A. Ghosh and A. Senthilrajan, “Comparison of machine learning techniques for spam detection,” Multimedia Tools and Applications. Springer, 2023. doi: 10.1007/s11042-023-14689-3.
H. Rahman, M. O. Faruq, T. B. A. Hai, W. Rahman, and ..., “IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh,” Journal of agriculture …. Elsevier, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666154321001691
B. Kishore, A. Yasar, Y. S. Taspinar, R. Kursun, and ..., “Computer-aided multiclass classification of corn from corn images integrating deep feature extraction,” Computational …. hindawi.com, 2022. [Online]. Available: https://www.hindawi.com/journals/cin/2022/2062944/
S. Elango, D. Haldar, and A. Danodia, “Discrimination of maize crop in a mixed Kharif crop scenario with synergism of multiparametric SAR and optical data,” Geocarto Int., 2022, doi: 10.1080/10106049.2021.1920628.
C. Boukhatem, H. Y. Youssef, and ..., “Heart disease prediction using machine learning,” 2022 Adv. Sci. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9734880/
N. Biswas, K. M. M. Uddin, S. T. Rikta, and S. K. Dey, “A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach,” Healthcare Analytics. Elsevier, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772442522000569
A. D. Goswami, G. S. Bhavekar, and P. V Chafle, “Electrocardiogram signal classification using VGGNet: a neural network based classification model,” International Journal of …. Springer, 2023. doi: 10.1007/s41870-022-01071-z.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.
Copyright (c) 2023 Indonesian Journal of Data and Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- The work is not under consideration for publication elsewhere.
- The work has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with Indonesian Journal of Data and Science agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.