Sugeno Fuzzy Personality Prediction System: An Approach to Overcoming Psychological Measurement Uncertainty

  • Nadindra Dwi Ariyanta Universitas Negeri Malang
  • Anik Nur Handayani Universitas Negeri Malang

Keywords: Fuzzy Logic Sugeno, MBTI, Uncertainty, Psychological Measurements, Personality prediction

Abstract

Personality prediction is a significant field in psychological measurement, yet it faces challenges due to psychological data's ambiguous and uncertain nature. This study aims to develop a Sugeno-based fuzzy logic system for predicting personality types according to the Myers-Briggs Type Indicator (MBTI). The dataset includes synthetic personality data, incorporating age, introversion, sensing, thinking, and judging. The fuzzification process converts crisp input values into fuzzy variables, which are then processed using predefined fuzzy rules to generate personality predictions. The defuzzification step yields crisp outputs corresponding to MBTI types, demonstrating the system's ability to handle uncertainty and ambiguity effectively. Implementation and evaluation were conducted using Python and LabVIEW, revealing a satisfactory performance with a low error rate of 0.445. This study highlights the potential of fuzzy logic, particularly the Sugeno method, in enhancing accuracy and adaptability in personality prediction, contributing to applications in education, human resource management, and personalized digital services.

Downloads

Download data is not yet available.

References

I. Thielmann, M. Moshagen, BenjaminE. Hilbig, and I. Zettler, “On the Comparability of Basic Personality Models: Meta-Analytic Correspondence, Scope, and Orthogonality of the Big Five and HEXACO Dimensions,” Eur J Pers, vol. 36, no. 6, pp. 870–900, Nov. 2022, doi: 10.1177/08902070211026793.

D. Radisavljević, B. Batalo, R. Rzepka, and K. Araki, “Myers-Briggs Type Indicator and the Big Five Model - How Our Personality Affects Language Use,” in 2022 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Dec. 2022, pp. 1–6. doi: 10.1109/CSDE56538.2022.10089309.

B. Rammstedt, L. Roemer, J. Mutschler, and C. Lechner, “The Big Five Personality Dimensions in Large-Scale Surveys: An Overview of 25 German Data Sets for Personality Research,” Personality Science, vol. 4, no. 1, p. e10769, Jan. 2023, doi: 10.5964/ps.10769.

M. Jayaratne and B. Jayatilleke, “Predicting Personality Using Answers to Open-Ended Interview Questions,” IEEE Access, vol. 8, pp. 115345–115355, 2020, doi: 10.1109/ACCESS.2020.3004002.

D. C. Pandey, G. S. Kushwaha, and S. Kumar, “Mamdani fuzzy rule-based models for psychological research,” SN Appl. Sci., vol. 2, no. 5, p. 913, Apr. 2020, doi: 10.1007/s42452-020-2726-z.

L. Chang, “Application of Fuzzy Comprehensive Evaluation Based on Genetic Algorithm in Psychological Measurement,” Scientific Programming, vol. 2021, no. 1, p. 9607006, 2021, doi: 10.1155/2021/9607006.

Z. Li, “Prediction of MBTI Personality Leveraging Machine Learning Algorithms,” Applied and Computational Engineering, vol. 8, pp. 562–569, Aug. 2023, doi: 10.54254/2755-2721/8/20230275.

J. Y, S. M. Mohanraj, and S. R, “A Synoptic Survey on Personality Prediction System using MBTI,” in 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), Aug. 2022, pp. 950–955. doi: 10.1109/ICESC54411.2022.9885634.

A. Kunte and S. Panicker, “Personality Prediction of Social Network Users Using Ensemble and XGBoost,” in Progress in Computing, Analytics and Networking, H. Das, P. K. Pattnaik, S. S. Rautaray, and K.-C. Li, Eds., Singapore: Springer, 2020, pp. 133–140. doi: 10.1007/978-981-15-2414-1_14.

P. V. Jahnavi, P. H. Sumana, S. C. Kousar, P. Himaja, and K. J. Ratnakar, “MBTI-Based Personality Prediction From Text Using Machine Learning Techniques,” EPRA International Journal of Multidisciplinary Research (IJMR), vol. 9, no. 10, Art. no. 10, Oct. 2023, doi: https://doi.org/10.36713/epra14759.

K. Sönmezöz, Ö. Uğur, and B. Diri, “MBTI Personality Prediction With Machine Learning,” 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4, Oct. 2020, doi: 10.1109/SIU49456.2020.9302239.

H. A. Shafi, A. Sikander, I. M. Jamal, J. Ahmad, and M. Aboamer, “A Machine Learning Approach for Personality Type Identification using MBTI Framework,” Journal of Independent Studies and Research Computing, 2022, Accessed: Oct. 29, 2024, doi: 10.31645/jisrc.43.19.2.2.

M. K. Langeroudi, M. R. Yamaghani, and S. Khodaparast, “FD-LSTM: A Fuzzy LSTM Model for Chaotic Time-Series Prediction,” IEEE Intelligent Systems, vol. 37, no. 4, pp. 70–78, Jul. 2022, doi: 10.1109/MIS.2022.3179843.

J.-C. Rohner and H. Levinsson, “Quantifying definitional relations in psychological measurement,” New Ideas in Psychology, vol. 56, p. 100749, Jan. 2020, doi: 10.1016/j.newideapsych.2019.100749.

N. Cerkez, B. Vrdoljak, and S. Skansi, “A Method for MBTI Classification Based on Impact of Class Components,” IEEE Access, vol. 9, pp. 146550–146567, 2021, doi: 10.1109/ACCESS.2021.3121137.

M. A. Akber, T. Ferdousi, R. Ahmed, R. Asfara, and R. Rab, “Personality Prediction Based on Contextual Feature Embedding SBERT,” in 2023 IEEE Region 10 Symposium (TENSYMP), Sep. 2023, pp. 1–5. doi: 10.1109/TENSYMP55890.2023.10223609.

C. M. Khidirova, S. S. Sadikova, G. M. Nashvandova, and S. E. Mirzaeva, “Neuro-fuzzy algorithm for clustering multidimensional objects in conditions of incomplete data,” J. Phys.: Conf. Ser., vol. 1901, no. 1, p. 012036, May 2021, doi: 10.1088/1742-6596/1901/1/012036.

X. Sun, J. Huang, S. Zheng, X. Rao, and M. Wang, “Personality Assessment Based on Multimodal Attention Network Learning with Category-Based Mean Square Error,” IEEE Transactions on Image Processing, vol. 31, pp. 2162–2174, 2022, doi: 10.1109/TIP.2022.3152049.

M. O. Hegazi, B. Almaslukh, and K. Siddig, “A Fuzzy Model for Reasoning and Predicting Student’s Academic Performance,” Applied Sciences, vol. 13, no. 8, Art. no. 8, Jan. 2023, doi: 10.3390/app13085140.

T. Denœux, “Quantifying Prediction Uncertainty in Regression Using Random Fuzzy Sets: The ENNreg Model,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 10, pp. 3690–3699, Oct. 2023, doi: 10.1109/TFUZZ.2023.3268200.

U. ZIA, “Predict People Personality Types,” Kaggle. Accessed: Oct. 28, 2024. [Online]. Available: https://www.kaggle.com/datasets/stealthtechnologies/predict-people-personality-types

N. Vaddem and P. Agarwal, “Myers Briggs Personality Prediction using Machine Learning Techniques,” IJCA, vol. 175, no. 23, pp. 41–44, Oct. 2020, doi: 10.5120/ijca2020920764.

E. J. Choong and K. D. Varathan, “Predicting judging-perceiving of Myers-Briggs Type Indicator (MBTI) in online social forum,” PeerJ, vol. 9, p. e11382, Jun. 2021, doi: 10.7717/peerj.11382.

N. Allahverdi, A. Tunali, H. Işik, and H. Kahramanli, “A Takagi–Sugeno type neuro-fuzzy network for determining child anemia,” Expert Systems with Applications, vol. 38, no. 6, pp. 7415–7418, Jun. 2011, doi: 10.1016/j.eswa.2010.12.083.

F. Klawonn and F. Höppner, “What Is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier,” in Advances in Intelligent Data Analysis V, M. R. Berthold, H.-J. Lenz, E. Bradley, R. Kruse, and C. Borgelt, Eds., Berlin, Heidelberg: Springer, 2003, pp. 254–264. doi: 10.1007/978-3-540-45231-7_24.

H. Bhardwaj, P. Tomar, A. Sakalle, and W. Ibrahim, “EEG-Based Personality Prediction Using Fast Fourier Transform and DeepLSTM Model,” Computational Intelligence and Neuroscience, vol. 2021, no. 1, p. 6524858, 2021, doi: 10.1155/2021/6524858.

M. H. Amirhosseini and H. Kazemian, “Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®,” Multimodal Technologies and Interaction, vol. 4, no. 1, Art. no. 1, Mar. 2020, doi: 10.3390/mti4010009.

M. Tabakov, A. Chlopowiec, and A. Chlopowiec, “A Novel Classification Method Using the Takagi–Sugeno Model and a Type-2 Fuzzy Rule Induction Approach,” Applied Sciences, vol. 13, p. 5279, Apr. 2023, doi: 10.3390/app13095279.

J. R. Castro, O. Castillo, M. A. Sanchez, O. Mendoza, A. Rodríguez-Diaz, and P. Melin, “Method for Higher Order polynomial Sugeno Fuzzy Inference Systems,” Information Sciences, vol. 351, pp. 76–89, Jul. 2016, doi: 10.1016/j.ins.2016.02.045.

M. Bahuti, L. H. P. Abreu, T. Yanagi Junior, R. R. de Lima, and A. T. Campos, “Performance Of Fuzzy Inference Systems To Predict The Surface Temperature Of Broiler Chickens,” Eng. Agríc., vol. 38, pp. 813–823, Dec. 2018, doi: 10.1590/1809-4430-Eng.Agric.v38n6p813-823/2018.

R. Khosravanian, M. Sabah, D. A. Wood, and A. Shahryari, “Weight on drill bit prediction models: Sugeno-type and Mamdani-type fuzzy inference systems compared,” Journal of Natural Gas Science and Engineering, vol. 36, pp. 280–297, Nov. 2016, doi: 10.1016/j.jngse.2016.10.046.

T. Carneiro, R. V. Medeiros Da NóBrega, T. Nepomuceno, G.-B. Bian, V. H. C. De Albuquerque, and P. P. R. Filho, “Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications,” IEEE Access, vol. 6, pp. 61677–61685, 2018, doi: 10.1109/ACCESS.2018.2874767.

S. Balovsyak, O. Derevyanchuk, H. Kravchenko, Y. Ushenko, and Z. Hu, “Clustering Students According to their Academic Achievement Using Fuzzy Logic,” International Journal of Modern Education and Computer Science, vol. 15, no. 6, p. 31, doi: https://doi.org/10.5815/ijmecs.2023.06.03.

J. Aguilera-Alvarez, J. Padilla-Medina, C. Martínez-Nolasco, V. Samano-Ortega, M. G. Bravo Sanchez, and J. Martinez, “Development of a Didactic Educational Tool for Learning Fuzzy Control Systems,” Mathematical Problems in Engineering, vol. 2021, pp. 1–17, Jul. 2021, doi: 10.1155/2021/3158342.

I. González, A. J. Calderón, A. Mejías, and J. M. Andújar, “Novel Networked Remote Laboratory Architecture for Open Connectivity Based on PLC-OPC-LabVIEW-EJS Integration. Application in Remote Fuzzy Control and Sensors Data Acquisition,” Sensors, vol. 16, no. 11, Art. no. 11, Nov. 2016, doi: 10.3390/s16111822.

Published
2024-12-31
How to Cite
Nadindra Dwi Ariyanta, & Anik Nur Handayani. (2024). Sugeno Fuzzy Personality Prediction System: An Approach to Overcoming Psychological Measurement Uncertainty. Indonesian Journal of Data and Science, 5(3), 216-228. https://doi.org/10.56705/ijodas.v5i3.192