The Comparison of Logistic Regression Methods and Random Forest for Spotify Audio Mode Featurre Classification
Abstract
Studi ini membandingkan kemampuan dari metode regresi logistik dan random forest dalam melakukan klasifikasi fitur mode. Fitur mode ini merupakan fitur yang terdapat di dalam data fitur audio. Secara keseluruhan, data ini berisikan data dari musik atau lagu yang dirilis di platform Spotify yang di dalamnya terdapat berbagai fitur dari masing-masing musik. Dalam melakukan studi ini, metode regresi logistik dan metode random forest ini diterapkan dalam bahasa pemrograman Python. Setelah dilakukannya studi ini dapat disimpulkan bahwa metode random forest dapat melakukan klasifikasi yang lebih baik walaupun dengan selisih yang cukup dekat. Karena kedua metode ini adalah metode yang baik dalam melakukan klasifikasi. Fitur penting yang ditampilkan oleh random forest juga memberikan hasil yang lebih memuaskan, karena fitur yang dihasilkan memang fitur yang berkaitan dengan fitur mode dan sesuai dengan teori musik.
Downloads
References
M. Muttaqin, Seni Musik Klasik Jilid 1 untuk SMK, Jilid 1., vol. 1. Jakarta: Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional, 2008.
L. Fang, J. Shang, and N. Chen, “Perception of western musical modes: A Chinese study,” Front. Psychol., vol. 8, no. OCT, pp. 1–8, 2017, doi: 10.3389/fpsyg.2017.01905.
I. Press, “The Affective Character of the Major and Minor Modes in Music Author ( s ): Kate Hevner Source : The American Journal of Psychology , Jan ., 1935 , Vol . 47 , No . 1 ( Jan ., 1935 ), Published by : University of Illinois Press Stable URL : http://www.jsto,” vol. 47, no. 1, pp. 103–118, 1935.
A. . Fallis, Analisis Regresi Logistik, vol. 53, no. 9. 2013.
H. D. Anggana, “Penerapan Model Klasifikasi Regresi Logistik, Support Vector Machine , Classification and Regression Tree Terhadap Data Kejadian Difteri Di Provinsi Jawa Barat,” Euclid, vol. 5, no. 2, p. 20, 2018, doi: 10.33603/e.v5i2.1121.
D. W. Hosmer and S. Lemeshow, “Applied Logistic Regression.” pp. 1–375, 2000, doi: 10.1074/jbc.272.33.20373.
H. Wibowo, W. Rahayu, P. S. Matematika, U. N. Jakarta, and R. L. Biner, “OVERDISPERSI PADA REGRESI LOGISTIK BINER MENGGUNAKAN METODE BETA BINOMIAL,” p. 53, 2007.
R. A. Haristu, “PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND,” Universitas Sanata Dharma, 2019.
L. Breiman, “Random Forest,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1017/CBO9781107415324.004.
M. Sandri and P. Zuccolotto, “A bias correction algorithm for the gini variable importance measure in classification trees,” J. Comput. Graph. Stat., vol. 17, no. 3, pp. 611–628, 2008, doi: 10.1198/106186008X344522.
Breiman L, Cutler A. 2003. Manual on Setting Up, Using, and Understanding Random Forest V4.0. [terhubung berkala]. http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf.
Hilbe, J. M. (2011). Logistic Regression Lotion Logistic Regression Regression. 2, 113.
Jamalus. (1988.). Buku pengajaran musik melalui pengalaman musik panduan pengajar/ Jamalus. Jakarta :: Proyek Pengembangan Lembaga Pendidikan Tenaga Kependidikan,.
Nirwana. S.R.A. 2015. Regresi Logistik Multinomial dan Penerapannya dalam Menentukan Faktor yang Berpengaruh pada Pemilihan Program Studi di Jurusan Matematika UNM. Skripsi. Universitas Negeri Makassar. Makassar.
Polamuri, Saimadhu. How Random Forest Algorithm Works In Machine Learning https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing/
Williams G. (2011) Random Forests. In: Data Mining with Rattle and R. Use R. Springer, New York, NY
Copyright (c) 2020 Indonesian Journal of Data and Science
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- The work is not under consideration for publication elsewhere.
- The work has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with Indonesian Journal of Data and Science agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (CC BY-NC 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.