Advancements in Agricultural Automation: SVM Classifier with Hu Moments for Vegetable Identification

  • Bagus Satrio Waluyo Poetro Universitas Islam Sultan Agung
  • ⁠⁠Eny Maria Politeknik Pertanian Negeri Samarinda
  • Hamada Zein Universitas Muhammadiyah Kalimantan Timur
  • Effan Najwaini Politeknik Negeri Banjarmasin
  • Dian Hafidh Zulfikar UIN Raden Fatah Palembang

Keywords: Support Vector Machine, Hu Moments, Vegetable Classification, Image Segmentation, Agricultural Automation, Feature Extraction, Machine Learning

Abstract

This study investigates the application of Support Vector Machine (SVM) classifiers in conjunction with Hu Moments for the purpose of classifying segmented images of vegetables, specifically Broccoli, Cabbage, and Cauliflower. Utilizing a dataset comprising segmented vegetable images, this research employs the Canny method for image segmentation and Hu Moments for feature extraction to prepare the data for classification. Through the implementation of a 5-fold cross-validation technique, the performance of the SVM classifier was thoroughly evaluated, revealing moderate accuracy, precision, recall, and F1-scores across all folds. The findings highlight the classifier's potential in distinguishing between different vegetable types, albeit with identified areas for improvement. This research contributes to the growing field of agricultural automation by demonstrating the feasibility of using SVM classifiers and image processing techniques for the task of vegetable identification. The moderate performance metrics emphasize the need for further optimization in feature extraction and classifier tuning to enhance classification accuracy. Future recommendations include exploring alternative machine learning algorithms, advanced feature extraction methods, and expanding the dataset to improve the classifier's robustness and applicability in agricultural settings. This study lays a foundation for future advancements in automated vegetable sorting and quality control, offering insights that could lead to more efficient agricultural practices.

Downloads

Download data is not yet available.

References

R. Setiawan, H. Zein, R. A. Azdy, and ..., “Rice Leaf Disease Classification with Machine Learning: An Approach Using Nu-SVM,” Indones. J. …, 2023, doi: 10.56705/ijodas.v4i3.114.

L. Saiman and R. Satra, “Analisis performa metode Support Vector Machine untuk klasifikasi dataset aroma tahu berformalin,” Indones. J. Data Sci., 2021, doi: 10.56705/ijodas.v2i2.28.

S. Markkandan, “SVM-based compliance discrepancies detection using remote sensing for organic farms,” Arab. J. Geosci., vol. 14, no. 14, 2021, doi: 10.1007/s12517-021-07700-4.

A. Binbusayyis, “Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM,” Appl. Intell., vol. 51, no. 10, pp. 7094–7108, 2021, doi: 10.1007/s10489-021-02205-9.

F. Wu, C. Lin, and R. Weng, “Probability Estimates for Multi-Class Support Vector Machines by Pairwise Coupling,” J. Mach. Learn. Res., vol. 5, pp. 975–1005, 2004.

S. S. Gornale, “Automatic Detection and Classification of Knee Osteoarthritis Using Hu’s Invariant Moments,” Front. Robot. AI, vol. 7, 2020, doi: 10.3389/frobt.2020.591827.

Y. Jusman, “Classification System for Leukemia Cell Images based on Hu Moment Invariants and Support Vector Machines,” Proc. - 2021 11th IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE 2021, pp. 137–141, 2021, doi: 10.1109/ICCSCE52189.2021.9530974.

M. Khushi, “A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data,” IEEE Access, vol. 9, pp. 109960–109975, 2021, doi: 10.1109/ACCESS.2021.3102399.

K. A. N. Pelliza, “Analysis of the efficiency of the adaptive canny method for the detection of icebergs at open sea,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 3, pp. 459–464, 2020, doi: 10.5194/isprs-archives-XLII-3-W12-2020-459-2020.

D. N. Lohare, “Comparative Study of Prewitt and Canny Edge Detector Using Image Processing Techniques,” Adv. Intell. Syst. Comput., vol. 1187, pp. 705–713, 2021, doi: 10.1007/978-981-15-6014-9_86.

K. Benhamza, “Canny edge detector improvement using an intelligent ants routing,” Evol. Syst., vol. 12, no. 2, pp. 397–406, 2021, doi: 10.1007/s12530-019-09299-0.

J. Trivedi, “Canny edge detection based real-time intelligent parking management system,” Sci. J. Silesian Univ. Technol. Ser. Transp., vol. 106, pp. 197–208, 2020, doi: 10.20858/sjsutst.2020.106.17.

J. Kuzmic, “Comparison between Filtered Canny Edge Detector and Convolutional Neural Network for Real Time Lane Detection in a Unity 3D Simulator,” Int. Conf. Internet Things, Big Data Secur. IoTBDS - Proc., vol. 2021, pp. 148–155, 2021, doi: 10.5220/0010383701480155.

Y. Jusman, “Machine Learnings of Dental Caries Images based on Hu Moment Invariants Features,” Proc. - 2021 Int. Semin. Appl. Technol. Inf. Commun. IT Oppor. Creat. Digit. Innov. Commun. within Glob. Pandemic, iSemantic 2021, pp. 296–299, 2021, doi: 10.1109/iSemantic52711.2021.9573208.

S. AbuRass, “Enhancing Convolutional Neural Network using Hu’s Moments,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 12, pp. 130–137, 2020, doi: 10.14569/IJACSA.2020.0111216.

B. P. Sari, “Classification System for Cervical Cell Images based on Hu Moment Invariants Methods and Support Vector Machine,” 2021 Int. Conf. Intell. Technol. CONIT 2021, 2021, doi: 10.1109/CONIT51480.2021.9498353.

A. I. Maghsoodi, “A machine learning driven multiple criteria decision analysis using LS-SVM feature elimination: Sustainability performance assessment with incomplete data,” Eng. Appl. Artif. Intell., vol. 119, 2023, doi: 10.1016/j.engappai.2022.105785.

T. Cuong-Le, “An efficient approach for damage identification based on improved machine learning using PSO-SVM,” Eng. Comput., vol. 38, no. 4, pp. 3069–3084, 2022, doi: 10.1007/s00366-021-01299-6.

X. Tian, “Predicting non-uniform indoor air quality distribution by using pulsating air supply and SVM model,” Build. Environ., vol. 219, 2022, doi: 10.1016/j.buildenv.2022.109171.

P. Manoharan, “SVM-based generative adverserial networks for federated learning and edge computing attack model and outpoising,” Expert Syst., 2022, doi: 10.1111/exsy.13072.

K. Nidhul, “Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis,” Energy, vol. 200, 2020, doi: 10.1016/j.energy.2020.117448.

A. Das, “Assessment of peri-urban wetland ecological degradation through importance-performance analysis (IPA): A study on Chatra Wetland, India,” Ecol. Indic., vol. 114, 2020, doi: 10.1016/j.ecolind.2020.106274.

N. Rismayanti, A. Naswin, U. Zaky, M. Zakariyah, and D. A. Purnamasari, “Evaluating Thresholding-Based Segmentation and Humoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, 2023, doi: 10.56705/ijaimi.v1i2.99.

A. Naswin and A. P. Wibowo, “Performance Analysis of the Decision Tree Classification Algorithm on the Pneumonia Dataset,” … Artif. Intell. Med. …, 2023, doi: 10.56705/ijaimi.v1i1.83.

Published
2024-03-31
How to Cite
Waluyo Poetro, B. S., Maria ⁠., Zein, H., Najwaini, E., & Zulfikar, D. H. (2024). Advancements in Agricultural Automation: SVM Classifier with Hu Moments for Vegetable Identification. Indonesian Journal of Data and Science, 5(1), 15-22. https://doi.org/10.56705/ijodas.v5i1.123