Improving Mental Health Diagnostics through Advanced Algorithmic Models: A Case Study of Bipolar and Depressive Disorders

  • Adityo Permana Wibowo Universitas Teknologi Yogyakarta
  • Medi Taruk Universitas Mulawarman
  • ⁠⁠Thomas Edyson Tarigan Universitas Teknologi Digital Indonesia
  • Muhammad Habibi Universitas Jenderal Achmad Yani Yogyakarta

Keywords: Machine Learning, Bipolar Disorder, Depressive Disorder, K-Nearest Neighbors, Gaussian Naive Bayes, Random Forest, Cross-Validation

Abstract

This study explores the efficacy of a voting classifier integrating K-Nearest Neighbors (K-NN), Gaussian Naive Bayes (GNB), and Random Forest algorithms in diagnosing bipolar and depressive disorders. Utilizing a dataset of 120 psychology patients exhibiting 17 essential symptoms, the research employs a 5-fold cross-validation method to assess the model's diagnostic performance. Results indicate variability in accuracy (66.67% to 91.67%), precision (66.46% to 93.75%), recall (identical to accuracy), and F1-Scores (65.96% to 91.43%) across folds, demonstrating the model's robustness and potential to enhance psychiatric diagnostic processes. The findings suggest that the voting classifier significantly outperforms traditional diagnostic methods, offering a promising tool for more accurate and efficient mental health diagnostics. This research contributes to the burgeoning field of machine learning applications in mental health care, highlighting the potential of ensemble methods in addressing the complexities of psychiatric diagnosis. Given the limitations related to data diversity and model sensitivity, future research should focus on employing larger, more varied datasets and exploring the integration of additional algorithms to further refine diagnostic accuracy. This study lays the groundwork for advancing mental health diagnostics through innovative machine learning techniques.

Downloads

Download data is not yet available.

References

N. Rismayanti, A. Naswin, U. Zaky, M. Zakariyah, and D. A. Purnamasari, “Evaluating Thresholding-Based Segmentation and Humoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, 2023, doi: 10.56705/ijaimi.v1i2.99.

S. Khomsah and E. Faizal, “Effectiveness Evaluation of the RandomForest Algorithm in Classifying CancerLips Data,” … Artif. Intell. Med. …, 2023, doi: 10.56705/ijaimi.v1i1.84.

D. Cahyanti, A. Rahmayani, and S. Ainy, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.

I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., vol. 2, no. 1, pp. 21–28, 2021, doi: 10.33096/ijodas.v2i1.25.

A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: h10.56705/ijodas.v3i3.54.

R. F. Syam, “Performance Comparison Analysis of Classifiers on Binary Classification Dataset,” Indones. J. Data Sci., 2023, doi: 10.56705/ijodas.v4i2.77.

L. B. C. Tanujayaa, B. Susanto, and A. Saragiha, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Fitur Mode Audio Spotify,” Indones. J. data Sci., vol. 1, no. 3, pp. 68–78, 2020, doi: 10.33096/ijodas.v1i3.16.

B. Cao, “Performance analysis and comparison of PoW, PoS and DAG based blockchains,” Digit. Commun. Networks, vol. 6, no. 4, pp. 480–485, 2020, doi: 10.1016/j.dcan.2019.12.001.

S. Rahman, “Performance analysis of boosting classifiers in recognizing activities of daily living,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, 2020, doi: 10.3390/ijerph17031082.

I. P. Putri, “Analisis Performa Metode K-Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., 2021, doi: 10.33096/ijodas.v2i1.25.

G. Ketepalli and P. Bulla, “Data Preparation and Pre-processing of Intrusion Detection Datasets using Machine Learning,” 2023 Int. Conf. …, 2023, doi:10.1109/ICICT57646.2023.10134025.

J. Zhao, K. S. Chong, W. Shu, and ..., “A Data Pre-Processing Module for Improved-Accuracy Machine-Learning-based Micro-Single-Event-Latchup Detection,” 2023 IEEE 9th Int. …, 2023, doi: 10.1109/SMC-IT56444.2023.00009.

N. Rezova, L. Kazakovtsev, G. Shkaberina, and ..., “Data Pre-Processing for Ecosystem Behavior Analysis,” 2022 Int. …, 2022, doi:10.1109/InfoTech55606.2022.9897105.

A. Tuppad and S. D. Patil, “Data Pre-processing Issues in Medical Data Classification,” 2023 Int. Conf. …, 2023, doi:10.1109/NMITCON58196.2023.10275855.

M. S. Hashim, “Breast Cancer Prediction Using Soft Voting Classifier Based on Machine Learning Models,” IAENG Int. J. Comput. Sci., vol. 50, no. 2, 2023.

Y. Xiao, “Enhancing Multi-Class Classification in One-Versus-One Strategy: A Type of Base Classifier Modification and Weighted Voting Mechanism,” 2021 IEEE 3rd Int. Conf. Commun. Inf. Syst. Comput. Eng. CISCE 2021, pp. 303–307, 2021, doi: 10.1109/CISCE52179.2021.9445948.

Z. Xiong, “Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation,” Comput. Mater. Sci., vol. 171, 2020, doi: 10.1016/j.commatsci.2019.109203.

O. Karal, “Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation,” Proc. - 2020 Innov. Intell. Syst. Appl. Conf. ASYU 2020, 2020, doi: 10.1109/ASYU50717.2020.9259880.

M. Rafało, “Cross validation methods: Analysis based on diagnostics of thyroid cancer metastasis,” ICT Express, vol. 8, no. 2, pp. 183–188, 2022, doi: 10.1016/j.icte.2021.05.001.

E. Najwaini, T. E. Tarigan, and F. P. Putra, “Application of the K-Nearest Neighbors (KNN) Algorithm on the Brain Tumor Dataset,” … Artif. Intell. …, 2023, doi: 10.56705/ijaimi.v1i1.85.

Published
2024-03-31
How to Cite
Wibowo, A. P., Taruk, M., Tarigan⁠. E., & Habibi, M. (2024). Improving Mental Health Diagnostics through Advanced Algorithmic Models: A Case Study of Bipolar and Depressive Disorders. Indonesian Journal of Data and Science, 5(1), 8-14. https://doi.org/10.56705/ijodas.v5i1.122