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Abstract: 

The Cavendish banana is a tropical fruit that is widely consumed in Indonesia due to its sweet taste and high nutritional 
content. However, the degree of ripeness of a banana has a direct effect on its sugar content, which can be of particular 

concern for diabetics. The riper the banana, the higher the content of simple sugars such as glucose, fructose, and sucrose, 

which can increase the glycemic index (GI) and trigger blood sugar spikes. To assist diabetics in selecting bananas 

according to their ripeness level, this study developed a Cavendish banana ripeness classification model based on ResNet50 
Convolutional Neural Network (CNN) architecture.The research was conducted by collecting 475 images of Cavendish 

bananas from plantations in Jembrana, Bali, which were classified into five ripeness categories based on skin color. The 

dataset was expanded to 2,375 images through data augmentation techniques, such as rotation, flip, zoom, and translation. 

The ResNet50 model was modified by adding several new layers and optimized using Adam and SGD algorithms with 
varying learning rates. Evaluation was performed through different training scenarios and using the K-fold validation 

method.The results showed that the best scenario was achieved when using augmented data, Adam's optimizer, and a 

learning rate of 0.0001, which resulted in accuracies of up to 99% and 98% after cross-validation.In comparison, the model 

without augmentation only achieved a maximum accuracy of 81%. Thus, the use of the ResNet50 model proved to be 

effective for Cavendish banana ripeness classification. 
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1. Introduction 

The banana is a tropical fruit that is widely loved by people around the world, including in Indonesia. Apart from 

their sweet taste and soft texture, bananas are rich in nutrients such as vitamins, minerals, and fiber that are beneficial 

for health [1], [2]. Among the various types of bananas, Cavendish is one of the most popular varieties due to its wide 

availability and consistent flavor quality. In Indonesia, Cavendish bananas are available in various stages of ripeness, 

from unripe to fully ripe [3], [4]. 

However, the consumption of bananas at certain levels of ripeness may be of particular concern for diabetics. 

Based on data from the International Diabetes Federation (IDF) in 2021, the number of people with diabetes in 

Indonesia reached 19.5 million, making it one of the countries with the highest prevalence of diabetes in the world 

[5]. Ripe bananas are known to have a higher natural sugar content than unripe bananas. During the ripening process, 

the starch in the banana turns into simple sugars such as glucose, fructose, and sucrose, thus increasing the glycemic 

index (GI). This can cause a spike in blood sugar levels, which is risky for diabetics [6], [7], [8]. Diabetics can still 
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consume bananas, but with some important considerations, especially related to the ripeness of the banana. This is 

because bananas, especially ripe ones, contain higher levels of natural sugars, such as glucose, fructose, and sucrose, 

which can increase blood sugar levels. The riper the banana, the higher the simple sugar content, thus affecting the 

glycemic index (GI) of the banana [9], [10]. Therefore, managing the consumption of bananas based on their ripeness 

level is an important requirement to help diabetics maintain stable blood sugar levels [11], [12], [13]. 

On the other hand, recent developments in artificial intelligence (AI) technology, particularly in the field of image 

recognition, offer innovative solutions to address this problem [14]. One AI method that has proven effective is 

Convolutional Neural Network (CNN), which is a deep learning algorithm designed to automatically recognize 

patterns and features in images [15], [16]. CNNs work by convolving the input image using filters or kernels to extract 

important features, such as edges, texture, and shape [17]. This process allows the model to learn to recognize objects 

and patterns in the image without requiring manual programming of features. 

One popular CNN architecture is ResNet50, which stands for “Residual Networks” with 50 layers [18], [19]. 

ResNet50 is designed to overcome the vanishing gradient problem that often occurs in deep neural networks [20], 

[21], [22]. By utilizing this architecture, the system can analyze the visual characteristics of Cavendish bananas, such 

as skin color and texture, to determine their ripeness level quickly and accurately [23], [24]. CNN-based models, 

especially those using architectures such as ResNet50, have great potential to provide more efficient and precise 

solutions for diabetics in selecting bananas with ripeness levels that suit their needs. 

Currently, there are not many classification models devoted to Cavendish banana ripeness classification, especially 

those designed to help diabetics control sugar intake. This research aims to develop a ResNet50 architecture model 

that can accurately classify the ripeness level of Cavendish bananas. This model is expected to not only be a practical 

solution for people, especially diabetics, in choosing bananas that suit their needs but also to be used as a reference 

for the development of similar systems in the future. 

2. Method: 

 

Figure 1. Research Flow  

This research process begins with a literature study to review various previous studies and theories relevant to the topic of 

classification of Cavendish banana maturity levels. The next stage is problem identification, which determines the main problem 

that becomes the focus of the research. After that, data collection is carried out, which involves methods such as observation, 

interviews, and documentation to obtain relevant data. The collected data then went through preprocessing and data augmentation 

stages to ensure the data was ready to be used in the next process and augmentation to add variety to the data. In the next stage, 

the ResNet50 model is trained to evaluate the model's performance in classifying banana ripeness levels. Finally, results analysis 

and conclusions are conducted, where test results are analyzed to determine the extent to which the model is able to provide 

accurate classification results. 

Data Selection 

This study used primary data collected from Cavendish banana plantations in the Jembrana region of Bali. Images 

were captured using an iPhone 11 cell phone camera with 12 MP resolution. The objects were Cavendish banana fruits 

classified into five color-based ripeness categories, namely: green, yellowish green, yellow, spotted yellow, and 
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spotted brownish yellow. The total number of images collected is 475. After data augmentation, the total dataset 

increased to 2.375 images. 

 

Figure 2. (A) green, (B) yellowish green, (C) yellow, (D) spotted yellow, (E) spotted brownish yellow. 

Tools and Technology 

This research utilizes technologies and tools to train, build, and evaluate models namely: 

a. Program language: Python 

b. ReLU activation function 

c. Trained Models: ResNet50 

d. Adam & SGD optimizer  

e. Deep Learning Framework: TensorFlow and Keras 

f. K-fold cross-validation 

Data Pre-processing and Augmentation 

The data preprocessing stage begins with the division of the raw dataset into two main subsets, namely 80% training data and 

20% validation data. This research dataset consists of five categories of Cavendish banana ripeness levels, namely green, 

yellowish green, yellow, spotted yellow, and spotted brownish yellow. In addition, all images were converted to a standard size 

of 224 × 224 pixels to meet the needs of the ResNet50 model. In this study, data is augmented with geometric transformation 

techniques, such as rotation, vertical flip, horizontal flip, zoom, and translation. These methods add variety to the appearance of 

objects in the dataset so that the model can recognize objects better even when viewed from different angles, sizes, or directions. 

Model ResNet50 

The CNN model architecture used in this research utilizes transfer learning with ResNet50 as the base model [25]. ResNet50 

was chosen due to its superior ability in visual feature extraction from image data, based on its training on the ImageNet 

dataset[26], [27], [28]. The model was modified by adding several new layers to support banana ripeness classification. These 

layers include a global average pooling layer to reduce the feature dimension without losing key information, a dense layer with 

1024 neurons and a ReLU activation function, and a dropout layer with a 50% dropout ratio to reduce the risk of overfitting [29], 

[30], [31]. Finally, the model has an output layer with five neurons and a softmax activation function for multi-class classification. 

With this architecture, the model is trained using the categorical crossentropy method for multi-class classification and optimized 
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using Adam, which has the advantage of learning rate adjustment. This whole process allows the model to efficiently learn and 

adapt to the specific image dataset while utilizing the existing knowledge from the pre-trained model. 

Data Analysis Method 

The evaluation results of this study aim to determine the best combination of data usage and model settings in training. Several 

scenarios were tested, both using the original data (without augmentation) and data that had been augmented with geometric 

transformations such as rotation, flip, zoom, and translation. The aim is to see if augmentation can help the model recognize 

objects better in a variety of views. In addition, the evaluation also compares two optimization algorithms, namely Adam and 

SGD, to find out which one is more effective in the model training process. Also, the effect of the learning rate value was analyzed, 

by comparing two values, namely 0.0001 and 0.00001. 

3. Results and Discussion 

Results 

Table 1. Evaluation Results of ResNet50 Models 

Model Data 
Learning 

Rate 
Optimizer Accuracy 

Accuracy With K-fold 

cross validation 

ResNet50 

Non 

Augmentasi 

0.0001 SGD 0.77 

0.81 
0.0001 Adam 0.73 

0.00001 SGD 0.36 

0.00001 Adam 0.65 

Augmentasi 

0.0001 SGD 0.97 

0.98 
0.0001 Adam 0.99 

0.00001 SGD 0.72 

0.00001 Adam 0.98 

 

Figure 3. Confusion Matrix Non-Augmentation 
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Figure 4. Accuracy and Loss Non-Augmentation 

 

Figure 5. Confusion Matrix Augmentation 
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Figure 6. Accuracy and Loss Augmentation 

Discussion 

Based on the results shown in Table 1, the ResNet50 model shows varying performance in the eight training 

scenarios. ResNet50 model in the first scenario without data augmentation, using the SGD optimizer with a learning 

rate of 0.0001 got an accuracy of 0.77, in the second scenario without data augmentation, using the Adam optimizer 

with a learning rate of 0.0001 got an accuracy of 0.73, in the third scenario without data augmentation, using the SGD 

optimizer with a learning rate of 0.00001 got an accuracy of 0.36, in the fourth scenario without data augmentation, 

using the Adam optimizer with a learning rate of 0. 00001 gets an accuracy of 0.65, while in the fifth scenario with 

data augmentation, using the SGD optimizer with a learning rate of 0.0001 gets an accuracy of 0.97 in the sixth 

scenario with data augmentation, using the Adam optimizer with a learning rate of 0.0001 gets an accuracy of 0. 99, 

in the seventh scenario with data augmentation, using the SGD optimizer with a learning rate of 0.00001 got an 

accuracy of 0.72, in the eighth scenario with data augmentation, using the Adam optimizer with a learning rate of 

0.00001 got an accuracy of 0.98, After all scenarios are tested, a K-Fold cross-validation process is carried out. The 

average accuracy result without data augmentation is 0.81, while with data augmentation it reaches 0.98. 

4. Conclusion 

This study shows that the ResNet50 CNN architecture is able to provide the best performance in classifying the 

ripeness level of Cavendish banana fruit, especially in scenarios that use data augmentation techniques. Optimal 

performance is achieved when the model is trained using the Adam optimizer with a learning rate of 0.0001 and 

validated using the K-Fold cross-validation method. In this scenario, the data used was augmented from 475 original 

images to a total of 2,375 Cavendish banana images. The test results show that the average accuracy obtained using 

data augmentation reaches 98%, much higher than the 81% accuracy obtained without augmentation. These results 

confirm that the application of data augmentation techniques is very effective in improving the performance of image 

classification models. 
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