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Abstract: 

Introduction: The high-power consumption of computing devices poses both economic and environmental challenges in 

the digital era. This study aims to optimize power usage using machine learning to maintain device performance while 

reducing energy costs and carbon emissions. Methods: The Random Forest algorithm was selected for its robustness in 

handling non-linear interactions among features. A dataset containing historical power consumption, workload metrics, 

environmental conditions, and hardware configurations was collected from sensors and logs. Data pre-processing included 
cleaning, normalization, and feature selection. The model was trained and evaluated using accuracy, precision, recall, F1-

score, MAE, and RMSE metrics. Hyperparameter tuning via grid search, random search, and Bayesian optimization was 

applied to enhance model performance. The model was deployed on real devices to test energy optimization under varied 

workloads. Results: The Random Forest model achieved 92% accuracy and an RMSE of 0.15. Tuning reduced RMSE by 
10% and improved F1-score from 0.875 to 0.905. Implementation on computing devices led to average power savings of 

15–20% across workload scenarios without notable performance degradation (<5%). The model also projected annual 

carbon emission reductions of up to 5 tons of CO₂ and operational savings of $50,000 when scaled to 1,000 servers. 

Conclusions: Machine learning, particularly Random Forest, proves effective in optimizing power consumption on 
computing devices. The proposed approach not only ensures computational efficiency but also promotes environmental 

sustainability. These findings support further exploration of ML-based solutions for green technology initiatives in IT 

infrastructure. 

Keywords: Energy Efficiency, Green Technology, Machine Learning, Power Consumption Optimization, Random Forest. 
Dataset link: https://bit.ly/TESATAD 

 

1. Introduction 

The rapid development of computing technology has had a significant impact on human life, especially in 

terms of efficiency and productivity [1]. However, behind this progress, there is a big challenge that needs to be 

overcome, namely the high-power consumption of computing devices [2]. High power consumption not only 

increases operational costs but also negatively impacts the environment due to the resulting carbon emissions [3]. 

Therefore, power consumption optimization is a critical issue that needs serious attention from researchers and 

practitioners in the field of technology [4]. 

One promising approach to address this problem is the use of machine learning (ML) [5]. Machine learning is 

a branch of artificial intelligence that allows systems to learn from data and make decisions or predictions without 

explicit programming [6]. In the context of power consumption optimization, ML can be used to analyze power 

usage patterns, predict workloads, and dynamically manage resource allocation [7]. Thus, ML has great potential 

to reduce power consumption without compromising device performance [8]. 

https://doi.org/10.56705/ijodas.v6i1.231
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Inputs in this study include historical data on power usage, hardware configuration, and environmental 

parameters such as temperature and workload [9]. This data is collected from various sources, including sensors 

on computing devices, system logs, and public datasets [10]. The quality and quantity of the data used is critical 

as it will determine the accuracy of the ML models developed [11]. In addition, the data needs to be pre-processed 

through pre-processing stages such as data cleaning, normalization, and feature selection to ensure that the ML 

model can work optimally [12]. 

Various machine learning-based approaches have been developed to optimize power consumption in 

computing devices. One widely used method is deep reinforcement learning (DRL), which enables systems to 

adaptively adjust power usage based on workload patterns and environmental conditions [13]. In a study [14], 

DRL was applied to optimize task scheduling in heterogeneous computing systems, achieving significant 

reductions in power consumption without compromising system performance. Additionally, federated learning 

has been introduced to distribute computational workloads efficiently across edge and cloud devices, thereby 

reducing overall energy consumption [15]. 

Beyond algorithms, hardware architecture plays a crucial role in energy efficiency. Studies have demonstrated 

that integrating edge computing with machine learning can enhance energy efficiency by offloading 

computationally intensive tasks to low-power devices, such as ARM-based or RISC-V microprocessors [16]. For 

example, research [17] found that optimizing power allocation in IoT devices using federated learning reduced 

energy consumption by up to 30% compared to traditional methods. Similarly, [18] introduced QuantU-Net, a 

deep learning model that utilizes bit width quantization techniques to lower power consumption in computing 

devices without sacrificing model accuracy. 

In addition to optimizing hardware and algorithms, dynamic power management techniques have been 

implemented to adjust power consumption based on system demands [19]. Rivet [20] explored optimization 

strategies using transformer-based architectures to reduce power consumption in AI models running on edge 

devices. This strategy allows devices to dynamically allocate power according to task complexity, thereby 

enhancing energy efficiency. Furthermore, research [21] demonstrated that combining digital twins and AI in 6G 

networks can lead to more energy-efficient systems through reinforcement learning-based optimization. 

The research process involves several key stages. First, the collected data will be analyzed to identify patterns 

and trends in power consumption. Next, ML models will be developed using algorithms such as regression, 

decision trees, or neural networks, depending on the characteristics of the data and optimization goals. The model 

will then be tested and validated using separate datasets to ensure its accuracy. In addition, hyperparameter tuning 

techniques will be applied to improve model performance. The final stage is the implementation of the model on 

a computing device to optimize power consumption in real-time. 

The expected output of this research is an ML model that is able to predict and optimize power consumption 

on computing devices with high accuracy. This model is expected to significantly reduce energy usage without 

sacrificing system performance. In addition, this research is also expected to produce practical recommendations 

for software developers and system administrators in managing computing resources more efficiently. The long-

term impact of this research is the reduction of operational costs and carbon footprint generated by data centers 

and other computing devices. 

This research has high relevance in the digital era that increasingly relies on intensive computing, such as 

cloud computing, big data, and the Internet of Things (IoT). By optimizing power consumption, not only energy 

efficiency is improved, but also environmental sustainability can be maintained. Therefore, this research is 

expected to make a significant contribution in the field of green technology and encourage further innovation in 

the development of environmentally friendly computing systems. 

2. Method: 

This methodology includes several main stages, starting from data collection, data pre-processing, model 

development, evaluation, to implementation. The following is a detailed explanation of each stage: 
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Figure 1. Methodology 

Data Collection 

The first stage of this research involves collecting relevant data for analysis and modeling. The collected data includes 

several key categories. First, power consumption data, which consists of historical records of power usage from computing 

devices such as servers, laptops, or IoT devices. Second, workload data, which provides information about the tasks or 

processes running on the device, including CPU, memory, and disk usage. Third, environmental data, which includes 

parameters such as temperature, humidity, and other operational conditions that may influence power consumption. Lastly, 

device configuration data, which covers hardware specifications such as processor type, RAM capacity, and storage type. 

These data can be obtained from various sources, including sensors embedded in the device, system logs, or publicly 

available datasets. 

Data Pre-processing 

Once the data is collected, the next stage is data pre-processing to ensure the quality and reliability of the data used 

in modeling. This stage consists of several key steps. First, data cleaning, which involves removing incomplete, duplicate, 

or irrelevant data to improve accuracy. Second, normalization, which adjusts the scale of the data to ensure consistency, 

using techniques such as min-max scaling or z-score normalization [22], [23]. Third, feature selection, which identifies and 

retains the most relevant features that significantly impact power consumption, thereby reducing dimensionality and 

improving model performance. Finally, dataset splitting, where the data is divided into appropriate subsets, such as a training 

set, validation set, and test set, typically in a ratio of 70:20:10, to ensure proper model evaluation and generalization. These 

pre-processing steps are essential for optimizing data quality and enhancing the effectiveness of the modeling process. 

Model Development 

In this stage, machine learning models are developed to predict and optimize power consumption. The process consists 

of several key steps. First, algorithm selection, which involves choosing an appropriate machine learning algorithm based 

on the characteristics of the data and research objectives. Common algorithms include linear regression, decision trees, 

random forests, support vector machines (SVM), and neural networks [24], [25]. Second, model training, where the selected 

model is trained using the training dataset. During this process, the model parameters are adjusted to minimize prediction 

errors and improve accuracy. Third, model validation, which evaluates the model’s performance using a validation dataset 

to prevent overfitting. Techniques such as cross-validation can be applied to ensure the model generalizes well to unseen 

data. These steps are essential for building an effective and reliable model for power consumption prediction and 

optimization. 

Model Evaluation 

After the model was developed, an evaluation phase was conducted to assess its performance. Several key 

evaluation metrics were used in this process. First, accuracy, which measures how well the model predicts power 

consumption. Second, precision and recall, which evaluate the accuracy and completeness of the model’s 

predictions, particularly in distinguishing relevant patterns in the data. Third, Mean Absolute Error (MAE) or 

Root Mean Squared Error (RMSE), which quantify the average difference between predicted and actual values, 

providing insight into the model’s predictive accuracy. Lastly, energy efficiency, which assesses the extent to 

which the model successfully optimizes power consumption. These evaluation metrics are essential for 

determining the reliability and effectiveness of the model in real-world applications. 
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Optimization and Tuning 

To enhance the performance of the model, optimization and tuning of its parameters were conducted. Several 

techniques were employed to achieve this. First, hyperparameter tuning, which involves searching for the optimal 

combination of hyperparameters using methods such as grid search or random search. This process helps improve 

the model’s accuracy and efficiency by selecting the best settings for training. Second, ensemble methods, which 

enhance model robustness by combining multiple models. Techniques such as bagging and boosting were utilized 

to reduce variance and improve prediction accuracy. These optimization strategies play a crucial role in refining 

the model’s performance and ensuring its effectiveness in power consumption prediction and optimization. 

Implementation and Testing 

Once the model is deemed sufficiently accurate and reliable, the implementation stage is carried out by 

applying it to a real-time computing device. This process involves several key steps. First, model integration, 

where the model is embedded into the computing system to automatically monitor and optimize power 

consumption. Second, real-time testing, which involves evaluating the model under actual operational conditions 

to ensure that it effectively optimizes power consumption without negatively impacting system performance. 

Finally, monitoring and maintenance, where the model’s performance is periodically assessed, and updates or 

adjustments are made as needed to maintain its effectiveness. These steps ensure that the model functions 

efficiently in real-world applications, contributing to improved energy management and system reliability. 

Analysis dan Reporting 

The final stage involves analyzing the research results and compiling a comprehensive report. This analysis 

includes several key aspects. First, performance comparison, which examines power consumption before and after 

implementing the model to evaluate its effectiveness. Second, environmental and economic impact, which 

assesses the reduction in carbon emissions and potential operational cost savings achieved through optimized 

power consumption. Lastly, recommendations, which provide practical guidance for developers and system 

administrators on adopting similar solutions to enhance energy efficiency in computing systems. This stage 

ensures that the findings are well-documented and can contribute to future advancements in sustainable 

computing. 

3. Results and Discussion 

Machine Learning Model Development Results 

The results of the research “Use of Machine Learning in Power Consumption Optimization of Computing 

Devices” are presented and analyzed in depth. The results include evaluation of the developed machine learning 

model, power consumption optimization testing, and the resulting impact on energy efficiency and performance 

of computing devices. A discussion is conducted to interpret the results and relate them to the research objectives 

based on previous studies. 

Algorithm selection results Table 1 for research on the use of machine learning in power consumption 

optimization on computing devices: 

Table 1. Random Forest Model Training Results 

Algorithm Accuracy Precision Recall F1-Score MAE RMSE 

Training 

Time 

(seconds) 

Description 

Regresi Linier 75% 72% 74% 0.73 0.25 0.30 10 
Simple, but 

less accurate. 

Decision Tree 85% 83% 84% 0.835 0.18 0.22 20 

Better than 

regression, 

but prone to 

overfitting. 

Random Forest 92% 90% 91% 0.905 0.12 0.15 120 

Best in 

accuracy and 

RMSE. 
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Algorithm Accuracy Precision Recall F1-Score MAE RMSE 

Training 

Time 

(seconds) 

Description 

Support Vector Machine 

(SVM) 
88% 86% 87% 0.865 0.14 0.18 200 

Accurate, but 

long training 

time. 

Neural Network 90% 88% 89% 0.885 0.13 0.16 300 

Good 

performance, 

but complex 

and slow. 

 

Figure 2. Best Machine Learning Algorithm Selection Results 

Analysis of machine learning algorithm selection results according to Table 1 above: 

a. Random Forest: Shows the best performance with 92% accuracy, RMSE 0.15, and F1-Score 0.905. 

Despite the longer training time (120 seconds), this algorithm was most effective in predicting power 

consumption. 

b. Neural Network: Has good performance (90% accuracy, RMSE 0.16), but requires a very long training 

time (300 seconds) and high computational complexity. 

c. SVM: Shows good accuracy (88%) but requires a long training time (200 seconds). 

d. Decision Tree: Better than linear regression, but prone to overfitting and has a higher RMSE (0.22). 

e. Linear Regression: Simplest and fastest (10 seconds), but less accurate (75% accuracy, RMSE 0.30). 

As a result of training and validation of several machine learning algorithms, such as linear regression, decision 

trees, random forest, and neural networks, it was found that the random forest algorithm provides the best 

performance in predicting power consumption. This can be seen from the lowest Root Mean Squared Error 

(RMSE) value, which is 0.15, compared to other algorithms that have RMSE above 0.20. In addition, random 

forest also showed a prediction accuracy of 92% on the test dataset. 

Hyperparameter Tuning Result 

With this parameter, the random forest model is able to reduce RMSE by 10% compared to before tuning, for 

complete data can be seen in the following Table 2. 

 

 

Table 2. Hyperparameter Tuning Results on Random Forest Model 

Hyperparameter Initial Value Optimal Value Tuning Method Impact on Model Performance 

Number of Estimators 100 200 Grid Search Improved accuracy from 89% to 92%. 

Max Depth 5 10 Random Search Reduced RMSE from 0.18 to 0.15. 

Min Samples Split 5 2 Bayesian Optimization Increased F1-Score from 0.875 to 0.905. 

Max Features Auto sqrt Grid Search 
Improve prediction efficiency without increasing 

latency. 



108  Indonesian Journal of Data and Science 

 

 

Hyperparameter Initial Value Optimal Value Tuning Method Impact on Model Performance 

Bootstrap True True - There is no significant change. 

Min Samples Leaf 1 1 - There is no significant change. 

Model Evaluation 

This model shows a good ability to predict power consumption with a relatively small error. 

Table 3. Machine Learning Model Evaluation Results 

Evaluation Metrics Before Tuning After Tuning Description 

Accuracy 89% 92% Increased by 3% after tuning. 

Precision 87% 90% Increased by 3% after tuning. 

Recall 88% 91% Increased by 3% after tuning. 

Mean Absolute Error (MAE) 0.15 0.12 Decreased by 20% after tuning. 

Root Mean Squared Error (RMSE) 0.18 0.15 Decreased by 16.67% after tuning. 

F1-Score 0.875 0.905 Increased by 3.4% after tuning. 

Training Time 120 seconds 150 seconds 
Increased by 25% due to model complexity after 

tuning. 

Inference Time 0.02 seconds 0.02 seconds 
Unchanged, showing efficiency in real-time 

prediction. 

Power Consumption Optimization Results 

The following Table 4 shows the results of power consumption optimization based on consumption reduction 

and impact on device performance. 

Table 4. Power Consumption Optimization Results on Various Workload Scenarios 

Workload 

Power Consumption 

Before Optimization 

(Watt) 

Power Consumption 

After Optimization 

(Watt) 

Power Saving 

(Watt) 

Percentage 

of Savings 

(%) 

Impact on 

Performance 

(Decreased 

Performance) 

Low Load 100 85 15 15% < 2% 

Medium Load 150 125 25 16.67% < 3% 

High Load 250 210 40 16% < 5% 

Peak Load 300 255 45 15% < 5% 

 

Figure 3. Power Consumption Optimization Results on Various Workload Scenarios 

Reduced Power Consumption 

After the model was implemented on computing devices, there was a significant reduction in power 

consumption. The average power saving achieved was 15-20% across various workload scenarios. For example, 

at low workloads, power consumption was reduced from 100 watts to 85 watts, while at high workloads, power 

consumption dropped from 250 watts to 210 watts. 
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Impact on Device Performance 

Power consumption optimization does not compromise device performance. Test results show that system 

response time and throughput remain stable, with insignificant performance degradation (less than 5%). This 

proves that the developed model is able to allocate resources efficiently without disrupting system operations. 

Environmental and Economic Impact Analysis 

The following Table 5 shows the environmental impact related to the reduction of carbon emissions and the 

economic impact related to operational costs. 

Table 5. Environmental and Economic Impact Analysis of Power Consumption Optimization 

Aspect Analysis Small Scale (1 Device) Medium Scale (100 Servers) Large Scale (1,000 Servers) 

Power Saving 15-20% (average17.5%) 15-20% (average 17.5%) 15-20% (average 17.5%) 

Energy Savings 15-20 watts every hour 1.500-2.000 watts every hour 15.000-20.000 watts every hour 

CO2 Emission Reduction ~50 kg CO2 every year ~5-ton CO2 year ~50-ton CO2 every year 

Tree Planting Equivalent ~1 tree every year ~120 trees every year ~1.200 tress every year 

Electricity Cost Savings $50 every year $5.000 every year $50.000 every year 

Environmental Impact 
Reducing carbon footprint 

locally 

Significant contribution to the data 

center 
Big impact on global sustainability 

Economic Impact Small operational cost savings Medium operational cost savings Major operational cost savings 

Carbon Emission Reduction 

With power savings of 15-20%, this research contributes to reducing carbon emissions. Based on 

calculations, if this model is applied to 100 servers in a data center, the carbon emission reduction can reach 5 

tons of CO2 per year. This is equivalent to planting 120 trees per year. 

Operational Cost Savings 

Saving power consumption also has an impact on reducing operational costs. On a small scale (one device), 

electricity cost savings reach 50 per year. If applied on a large scale for example, a data center with 1,000 

servers), cost savings can reach 50,000 per year. 

Discussion 

Model Success in Power Optimization 

The success of the random forest model in optimizing power consumption can be attributed to its ability to 

handle non-linear data and interactions between features. In addition, the systematic hyperparameter tuning 

process improves accuracy and reduces prediction error. These results are in line with previous research conducted 

by Zhang et al. (2020), who also found that random forest is effective in predicting energy consumption in 

computing systems. 

Impact on Environmental Sustainability 

The reduction in power consumption achieved in this study has positive implications for environmental 

sustainability. By reducing carbon emissions and operational costs, this model can be a viable solution to be 

applied to data centers and other computing devices. This supports the global trend of adopting green technology 

to reduce negative impacts on the environment. Challenges and Limitations 

While the results of the study show success, there are some challenges and limitations that need to be 

addressed: 

a. Dependence on Data Quality: Model accuracy is highly dependent on the quality and quantity of data 

used. Incomplete or unrepresentative data can reduce model performance. 

b. Computational Complexity: The training process of random forest models requires considerable 

computational resources, especially for very large datasets. 
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c. Adaptability to Different Types of Devices: The developed model may need to be customized for 

different types of computing devices, such as IoT devices or edge computing systems 

4. Conclusion 

According to the results and discussion described above, it can be concluded that the use of machine learning, 

especially the random forest algorithm, has successfully optimized the power consumption of computing devices 

with high accuracy. The random forest algorithm proved effective in predicting and optimizing power 

consumption, with an accuracy of 92% and an RMSE of 0.15. This demonstrates the algorithm's ability to handle 

non-linear data and interactions between features. The hyperparameter tuning process significantly improved the 

performance of the model, reducing the RMSE by 10%. The optimal parameters found include number of 

estimators: 200, max depth: 10, and min samples split: 2. In addition to this, the developed model performed well 

based on evaluation metrics such as accuracy, precision, recall, MAE, and RMSE. The impact of the results 

provides power savings of 15-20% which is achieved not only reducing operational costs but also contributing to 

environmental sustainability through reduced power consumption which contributes to the reduction of carbon 

emissions can reach 5 tons of CO2 per year, equivalent to planting 120 trees per year. Despite some limitations, 

this research opens up opportunities for further development in the field of energy optimization and green 

technology. 
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