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Abstract:

Skin cancer is a significant global health issue, with melanoma, basal cell carcinoma, and actinic keratosis being the most
common types. Early and accurate detection is critical to improve survival rates and treatment outcomes. This study
evaluates the performance of Convolutional Neural Networks (CNN) and ResNet50 in classifying segmented images of
skin lesions. The dataset, sourced from Kaggle, was pre-processed using U-Net for lesion segmentation to enhance the
quality of input data. Both models were trained and evaluated using accuracy, precision, recall, and F1-score metrics. The
CNN model demonstrated a balanced performance across classes, with a weighted F1-score of 47%, but suffered from
overfitting, as indicated by the divergence between training and validation losses. ResNet50 achieved better recall for basal
cell carcinoma (100%) but failed to classify actinic keratosis and melanoma, resulting in a macro F1-score of 23%. The
findings reveal that U-Net segmentation improved classification focus but was insufficient to address dataset imbalance
and model-specific limitations. This study highlights the challenges of skin cancer classification using deep learning and
underscores the importance of addressing data imbalance and overfitting. Future research should explore advanced
techniques, such as ensemble methods, data augmentation, and transfer learning, to improve the generalization and clinical
applicability of these models. The proposed framework serves as a foundation for further investigation into automated skin
cancer detection systems.

Keywords: Skin Cancer Detection, Convolutional Neural Network (CNN), ResNet50, U-Net Segmentation, Deep
Learning.
Dataset link: https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic

1. Introduction

Skin cancer is a significant global health challenge, with its incidence continually rising due to factors such as
increased ultraviolet radiation exposure and changes in lifestyle. It is primarily categorized into melanoma, basal cell
carcinoma, and squamous cell carcinoma, with melanoma being the most aggressive and responsible for the majority
of skin cancer-related deaths. Early and accurate detection is essential, as delayed diagnosis often results in metastasis,
leading to a poor prognosis. While traditional diagnostic methods like biopsies remain reliable, they are invasive,
time-consuming, and expensive. Consequently, there is a growing demand for automated, non-invasive diagnostic
methods to assist dermatologists in identifying skin cancer efficiently and accurately.

Despite advancements in deep learning for medical imaging, achieving high accuracy in skin cancer classification
remains challenging. Variations in lesion appearance, limited dataset sizes, and the complexity of feature extraction
are critical obstacles. Previous studies have demonstrated the potential of convolutional neural networks (CNNs) and
transfer learning models such as ResNet50 for skin cancer classification [1]-[3]. However, there is a lack of
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comparative analysis of these architectures when applied to images processed using segmentation techniques. This
research aims to address this gap by employing U-Net for precise lesion segmentation and comparing the classification
performance of CNN and ResNet50, offering insights into their strengths and limitations for skin cancer detection [4]-

[6].

The objectives of this study are threefold: first, to evaluate the role of U-Net in enhancing input data quality for
skin cancer classification; second, to compare the performance of CNN and ResNet50 in classifying actinic keratosis,
basal cell carcinoma, and melanoma; and third, to identify the strengths and limitations of these architectures to inform
future developments in automated skin cancer diagnostics. This research builds upon existing literature, such as the
work of Reddy et al., which highlights the importance of pre-processing in skin disease classification using CNN-
powered segmentation. Other studies, including those by [7]. And [8], demonstrate the efficacy of ensemble classifiers
and multi-class CNNs, respectively, in addressing challenges like misclassification and limited data. Meanwhile, [9].
combined Xception and ResNet50 architectures to achieve high accuracy through feature concatenation, and [10].
highlighted the impact of optimizer selection on ResNet50 and MobileNetVV2 performance. Additionally, [11]
demonstrated the potential of feature fusion techniques with ResNet50 for melanoma detection.

These studies underscore the importance of pre-processing and advanced architectures in improving skin cancer
classification. However, none have specifically examined the combined impact of U-Net segmentation and
comparative performance analysis of CNN and ResNet50. This study addresses this gap, providing a comprehensive
evaluation of these methods and contributing a novel framework that integrates segmentation and deep learning for
improved skin cancer detection.

2. Method:
This section describes the methodology employed in this study, including the dataset, pre-processing techniques,
model architecture, training process, and evaluation metrics. The research stages are shown in Figure 1.
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Figure 1. General Research Design Stages
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The dataset used in this research was sourced from Kaggle and comprises images categorized into three classes:
actinic keratosis, basal cell carcinoma, and melanoma, sample of dataset show in Figure 2. This dataset was chosen
due to its diversity and clinical relevance, providing a robust foundation for training and evaluating deep learning
models. The images were pre-processed and divided into training, validation, and test sets to ensure a comprehensive
evaluation of the models

Class: actinic keratosis Class: basal cell carcinoma
-

Class: melanoma
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Figure 2. Sample of Dataset

Data Pre-processing

To enhance the classification accuracy, U-Net was utilized for segmentation, isolating the lesion regions and
removing irrelevant background information [12], [13]. U-Net operates as an encoder-decoder network where:

1. Encoder extracts features from the input image using convolutional layers.
2. Decoder reconstructs the segmented image using transposed convolutions.

Mathematically, the U-Net loss function for segmentation can be defined as the combination of cross-entropy loss and
Dice coefficient to balance pixel-wise accuracy and overlap similarity, segmentation result sample show in Figure 3
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Where:
y; is the ground truth mask
¥, is the predicted mask

N is the total number of pixels
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Figure 3. Sample of Dataset after Pre-processing
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Model Architectures
Two deep learning architectures were used for classification:
1. Convolutional Neural Network (CNN): A custom CNN architecture was implemented with:
a. Convolutional layers for feature extraction.
b. Max-pooling layers for dimensionality reduction.
c. Fully connected layers for classification.
The convolution operation is defined as [4], [14], [15]:

Zi.]'=Z$n=_kZ£‘1=_k Wi nXi+m,j+n+b @

Where x is the input, w represents the filter weights, b is the bias, and k defines the kernel size.

2. ResNet50: ResNet50, a 50-layer deep residual network, was employed to leverage the power of transfer
learning [1], [16]-[18]. It introduces shortcut connections to prevent the vanishing gradient problem, where the
output of layer I is defined as:

yr=F(, W} +x, @
Where F represents the residual mapping, x, is the input to layer i, and {W,} denotes the weights of the layer.
Training Process
Both models were trained on segmented data with:

a. Loss Function: Categorical Cross-Entropy

C
Loce == ) ylog(®), ®
c=1

Where C is the number classes, y, is the ground truth probability for class c, and ¥, is the predicted probability.
b. Optimizer: Adam optimizer with learning rate n = 0.001.
c. Batch Size: 32 images per batch
d. Epoch: 50, with early stopping to prevent overfitting.

Evaluation Metrics
The performance of the models was evaluated using the following metrics [19]-[21]:
1. Accuracy:
TP+ TN

= 3
Recall = 4o TN ¥ FP T FN ®)
2. Recall:
Recall = —F 3
CCAL=TP T FN) 3)
3. F1-Score:

2(presisi x recall)
F — measure = — 4
(presisi + recall)

4. Confusion Matrix: A tabular representation of model predictions to identify class-wise performance.
a. Precision: The ratio of true positive predictions to the total positive prediction:

Precision = TP @
recision = om0
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3. Results and Discussion
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Figure 4: CNN Training and Validation Accuracy
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Figure 5: CNN Training and Validation Loss

The performance of CNN and ResNet50 was evaluated through training and validation accuracy, confusion
matrices, and classification reports, as shown in the accompanying figures. For the CNN model, the training accuracy
increased steadily across epochs, reaching approximately 88% by the 10th epoch, while validation accuracy stagnated
around 46% (Figure 4). This indicates potential overfitting, as confirmed by the sharp divergence between training
and validation loss (Figure 5). The confusion matrix for CNN (Figure 7) shows that the model performed relatively
well in detecting melanoma, achieving a precision of 73% and recall of 57% (Table 1). However, it struggled to
classify actinic keratosis and basal cell carcinoma correctly, resulting in a weighted F1-score of 47%. The rise in
validation loss after the 6th epoch further emphasizes the model's poor generalization to unseen data.
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In contrast, ResNet50 achieved slightly better training accuracy but failed to improve validation accuracy beyond
54%, as illustrated in Figure 8. The confusion matrix for ResNet50 (Figure 6) reveals its inability to classify actinic
keratosis and melanoma, while it achieved perfect recall for basal cell carcinoma. This skewed performance across
classes resulted in a macro F1-score of 23% (Table 2). The significant disparity in precision and recall between classes
suggests that ResNet50 was heavily affected by the dataset's imbalance, focusing predominantly on the dominant
class. Additionally, the consistent gap between training and validation loss (Figure 8) highlights ResNet50’s
overfitting to the training data.

The segmentation provided by U-Net contributed to isolating lesion regions, which improved CNN’s ability to
detect melanoma. However, it was insufficient to resolve the issues stemming from class imbalance, particularly for
ResNet50. Both models displayed overfitting tendencies, which could be mitigated in future studies through data
augmentation, dropout layers, or regularization techniques. Compared to previous studies, where ResNet50 achieved
better results with ensemble methods and optimizer tuning, the current implementation could benefit from such
enhancements to improve generalization. Furthermore, balancing the dataset with techniques like SMOTE or using
class-weighted loss functions may improve the classification of underrepresented classes. These limitations must be
addressed to make these models more suitable for clinical applications, where balanced performance across all classes
is critical.

Table 1. CNN Classification Report

Classification Report:

precision recall fl-score support

a 8.22 a.65 @.33 26

1 8.42 a.24 a.31 7@

2 a.73 @.57 a.64 aa

accuracy @.4s 186
macro avg 8.468 a.49 @.43 186
weighted avg @.54 a.46 a.47 186

Table 2. ResNet50 Classification Report

Classification Report:

precision recall fl-score  support

actinic keratosis 2.00 2.00 2.00 28
basal cell carcinoma 8.54 1.0@ 8.70 8@
melanoma 9.0@ 2.80 2.80 41

accuracy @.54 145

macro avg @.18 8.33 @.23 145

weighted avg 2.29 B.54 2.38 145

This analysis underscores the challenges of deep learning in medical image classification, particularly with
imbalanced datasets. While CNN displayed more balanced performance, its overfitting issues limit its applicability.
On the other hand, ResNet50’s strong focus on one class at the expense of others highlights the need for further
refinements, including the use of ensemble approaches or transfer learning with advanced tuning methods.

4. Conclusion

This study investigated the effectiveness of CNN and ResNet50 models in classifying skin cancer into three
categories—actinic keratosis, basal cell carcinoma, and melanoma—using segmented images processed with U-Net.
The results highlight the challenges of achieving balanced classification performance in the presence of imbalanced
datasets and model-specific limitations. The CNN model demonstrated a more balanced performance across classes
compared to ResNet50, achieving higher precision and recall for melanoma. However, its validation accuracy
stagnated at 46%, and the rising validation loss indicated significant overfitting. On the other hand, ResNet50 achieved
slightly better overall accuracy (54%) but struggled with imbalanced data, performing well only on the dominant class
(basal cell carcinoma) while failing to classify actinic keratosis and melanoma. This imbalance resulted in a low macro
F1-score of 23%, underscoring its inability to generalize effectively.
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The segmentation process using U-Net improved the models' focus on lesion regions, providing clearer input for
classification. However, the segmentation alone was insufficient to address the broader challenges posed by the
dataset's imbalance and the models' overfitting tendencies. These findings emphasize the need for advanced techniques
such as data augmentation, class-balancing strategies (e.g., SMOTE or class-weighted loss functions), and ensemble
methods to improve model performance and generalization. In conclusion, while CNN demonstrated potential for
more balanced classification, its overfitting issues and limited accuracy require further optimization. ResNet50,
despite its strong performance on one class, requires enhancements to handle imbalanced data effectively. Future
research should focus on addressing these limitations by integrating advanced deep learning techniques, optimizing
hyperparameters, and using larger, more balanced datasets. By doing so, these models can become viable tools for
clinical applications, offering reliable and automated solutions for skin cancer detection and diagnosis.
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