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Abstract: 

Probabilistic graphical model (PGMs) offer a powerful framework for modeling complex relationships between different 

components. By integrating information on the element composition and structural features, these models enable the 
inference of materials properties with a probabilistic perspective. This approach holds promising efforts towards 

accelerating materials discovery design, as it facilitates the predication of diverse materials characteristics, ranging from 

electronic and mechanical properties to thermal and optical behavior. The use of PGMs in materials science represents a 

sophisticated methodology for harnessing data-driven insights to guide the exploration of innovative materials with tailored 
functionalities. The purpose of this paper is to investigate literature for the exploitation of the data science concepts, big 

data and machine learning that yields computational intelligence. A literature review approach to understand the 

exploitation and use of computational intelligence in the leading-edge research and innovation of materials science. The 

findings illustrate that machine learning can be used to intricate chemical problems that otherwise would not be tractable. 
Leveraging PGMs presents a promising avenue for predicting the properties of new materials based on their composition 

and structure. 
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1. Introduction 

In materials science, the quest for discovering novel materials with desired properties has been a persistent 

challenge. Conventional methods that have been used over the years  to discover new materials, such as empirical trial 

and error and the density functional theory(DFT)-based methods are incapable of keeping up with the fast pace of the 

development of new materials today because of their long development cycles, low efficiency, and high cost [1]. 

Machine learning has become a topic of interest in many industrial fields such as material science and chemistry, 

used for the prediction of materials properties, accelerate simulations, design new structures, for the prediction 

synthesis routes of new materials [2]. 

PGMs are one of the fast-growing classes of machine learning models [3]. They are commonly used in chemistry 

and materials science due to their direct work on graph or structural representations of molecules and materials as 

such have full access to relevant information required to characterize materials [4]. Materials scientists are 

continuously striving to improve their ability to understand, predict and improve materials properties [5]. Over the 

past years materials scientists have relied highly on simulation and modeling methods to understand and predict 

materials properties. Due to the imitations of the traditional trial-and-error method in materials research, scientists 

have come up with new methods to predict and improve materials properties more affordable and less time consuming.  
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Recently, data-driven methods such as machine learning have been adopted for the prediction of new materials which 

lead to a paradigm shift in the way materials science research is conducted [6].  

Machine learning and data science have become an important part of natura science, considered as the fourth pillar 

in science, next to the experiment, theory, and simulations. Machine learning techniques are increasingly applied in 

all steps of the materials development cycle, from the database screening, finding initial candidate materials property 

predictions, for material designs, for the prediction of the synthesis conditions and automated experimental data 

analysis as well as experimental planning [7]. Machine learning techniques applied in material science ranges from a 

wide range of classical machine learning algorithms such as decision trees, convolutional neural networks, and 

probabilistic graphical models. 

PGMs have garnered significant attention for their potential to predict the properties of emerging materials based 

on their intrinsic composition and structural characteristics. PGMs represent a rapidly evolving class of machine 

learning models particularly well-suited for applications in chemistry and materials science [8]. Their inherent ability 

to operate directly on graph or structural representations of molecules and materials affords them comprehensive 

access to pertinent information crucial for characterizing materials. By leveraging the complex relationships between 

different material components, PGMs enable probabilistic inference of material properties, offering a nuanced 

understanding of diverse characteristics spanning electronic and mechanical properties to thermal and optical 

behaviour [9], [10]. 

The graphical models have been applied to a large number of fields, including bioinformatics, social science, 

control theory, image processing, marketing analysis, among others [11], [12]. However, structure learning for 

graphical models remains an open challenge since one must cope with a combinatorial search over the space of all 

possible structures. 

The quest for discovering and designing novel materials with specific and desirable properties has been a 

longstanding challenge in the field of materials science. Traditionally, the process of discovering novel materials relied 

heavily on empirical trail and error methods, which were guided by intuition and a limited understanding of the 

underlying principles governing materials behaviour [13]. However, as the materials science has evolved, the demand 

for efficient and systematic approaches to accelerate the discovery and design of new materials has become 

increasingly pronounced. In the past decades, density functional theory (DFT) and other theoretical methods played a 

very important role in predicting materials propertied by simulating the behaviour of atoms and electrons within 

materials. While these methods provided valuable insights, they also had a lot of limitations such as being 

computationally expensive, limiting their application to relatively small-scale and impeding their ability to keep pace 

with the rapidly advancing landscape of materials development [14], [15]. 

With the advent of machine learning (ML) techniques, a paradigm shift occurred in materials science. ML, 

described by its ability to discover patterns and relationships within large datasets, presents a promising avenue for 

predicting material properties, accelerating simulations, and guiding the design for new materials [16]. Researchers 

started leveraging ML algorithms to discover hidden correlations between materials composition, structure, and 

properties allowing for more informed and efficient exploration of the vast materials space. 

Within the domain of ML, PGMs emerged as a sophisticated and versatile tool for predicting materials properties 

[17]. PGMs provide a framework for representing and reasoning about uncertain information, which makes them well-

suited for capturing complex relationships within materials. PGMs directly work with graph or structural 

representations of molecules and materials, PGMs offer a unique advantage in extracting relevant information 

important for material characterization [18]. 

The use of PGMs in material sciences science has gained traction due to their ability to integrate different sources 

of information, consider uncertainties, and facilitate probabilistic inference of materials properties. This approach 

enables a nuanced understanding of the intricate relationship between different material components, allowing the 

prediction of a broad spectrum of properties, including electronic, mechanical, and thermal [19]. 
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Figure 1. Flavours of probabilistic graphical models 

Figure 1 illustrates the Probabilistic graphical models as a model with two sub-categories: (i). Direct and 

Undirected graphic models. The Direct graphic models are described as Bayesian networks also known as belief 

networks. They are probabilistic graphical models that represent a set of variables and their conditional dependencies 

via a direct acrylic graph (DAG). In a Bayesian network, each node represents a random variable, and the directed 

edges between the nodes encode probabilistic dependencies, indicating the casual relationships between variables. 

The Undirected graphic models are described as Markov networks, represents a set of variables with pairwise 

Markovian dependencies via an undirected graph. In a Markov random field (MRF), each node represents a random 

variable, and the absence of direct edges implies that the relationship between the variables are undirected and 

typically encode the notion of local interactions or spatial proximity [20], [21]. 

In this paper, we present a comprehensive survey of the existing structure learning algorithms. This research aims 

to harness the inherent probabilistic nature of PGMs to decipher intricate relationships between material compositions, 

structural attributes, and resulting properties. By integrating diverse datasets encompassing material compositions, 

structural configurations, and corresponding properties, this study seeks to construct and refine PGMs capable of 

accurately predicting material characteristics. Such predictive models hold the potential to accelerate the design and 

discovery of innovative materials. Despite this introduction, this paper comprises four other sections: method, data 

collection, recommendations, and conclusion. 

2. Method: 

 

Figure 2. Different sources used to conduct this work. 

Figure 2 illustrates the number sources which were consulted. The search criteria used to find out information was 

“PGMs for prediction of materials properties” AND “machine learning for prediction of materials properties”, from 



240  Indonesian Journal of Data and Science 

 

 

Materials project, Open Quantum materials database, journals of materials science, computational materials science, 

journals of chemical information and modelling and ACS applied materials and interfaces. This includes conferences, 

journal, early access articles and magazines were selected used in this research. 

A lot of research has been done in using data-driven and machine learning for the prediction of materials properties, 

but very limited research has been done in the use of PGMs to predict or design novel materials for specific 

functionalities. The need for the discovery of novel material properties for specific functionalities is a challenge 

experienced by many researchers in different sectors such as energy, computer and communication, aerospace, and 

medicine. Researcher from different backgrounds should work together to maximize their potential, to improve the 

short comes of predicting new properties of materials, efficiently and less cost effective. The sources consulted and 

used to conduct this work were Materials project, Open Quantum materials database, journals of materials science, 

computational materials science, journals of chemical information and modelling and ACS applied materials and 

interfaces. These sources combined a comprehensive, expertly curated abstract and citation database. It has enriched 

data and scholarly literature from a wide range of disciplines. It provides more diverse range of results. 

3. Results and Discussion 

Researchers in materials science, chemistry and engineering usually use data-driven models and machine learning 

for the prediction of materials properties. No research documents results were found for PGMs for use of prediction 

of materials properties but over a million results were found for machine learning and data driven models for prediction 

of materials properties. The most commonly used machine learning algorithms for the prediction of materials 

properties are random forest, Support Vector Machines, Convolutional Neural Networks, Gradient Boosting Machines 

and Gaussian Process Regression. 

A lot of literature has been published on the probabilistic graphical models and their impact in the materials science 

field, but little research has been done to use these models to actually predict any materials properties. There is more 

research that needs to be done in exploring PGMs for use in prediction of materials properties. In order to advance the 

utilization of probabilistic graphical models (PGMs) in predicting properties of new materials, several 

recommendations emerge from our analysis. First and foremost, the promotion of data sharing and collaboration 

among researchers is paramount. Open-access repositories and collaborative platforms can facilitate the exchange of 

materials data and foster interdisciplinary collaboration within the materials science community. Additionally, 

investing in the development of user-friendly software tools and platforms for building, training, and deploying PGMs 

is essential to empower researchers to effectively harness the capabilities of these models. Moreover, providing 

training and educational resources can equip researchers with the requisite knowledge and skills to leverage PGMs 

optimally in materials science research. Standardized protocols and benchmarks for validating the performance of 

PGMs in predicting material properties should be established to ensure rigor and comparability across studies. 

Collaboration between computational and experimental researchers to integrate PGMs with advanced experimental 

techniques can enhance the reliability and accuracy of material property predictions. Furthermore, ethical 

considerations, long-term funding and support, and engagement with stakeholders from academia, industry, 

government, and the broader community are crucial factors to consider in advancing the field. By embracing these 

recommendations, the materials science community can propel the use of PGMs towards innovative discoveries and 

advancements in materials design and engineering. 

4. Conclusion 

The exploration of PGMs for predicting properties of new materials based on their composition and structure 

represents a promising frontier in material science research. From Bayesian networks to Markov random fields, PGMs 

offer a versatile framework for modelling the dependencies between material components, providing insight into the 

underlying mechanisms governing material behaviour. By integrating information on element composition, structure 

motifs, and environmental factors, PGMs enable the prediction of diverse materials characteristics spanning electronic, 

mechanical, thermal, and optical domains. It is evident that the application of PGMs holds immerse promise for 

accelerating materials discovery and design. By leveraging data-driven insight and computational intelligence, 

researchers can explore innovative materials with tailored functionalities, driving advancement across various 

industrial sectors and scientific disciplines. Looking ahead, the future of PGMs in materials science lies in their 

continued refinement and application to emerging challenges and opportunities. 

Future research directions in the realm of PGMs for predicting new properties of materials offer a promising 

avenue for exploration. One of the avenues includes the development of dynamic graphical models capable of 
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capturing temporal dependencies and changes in material properties over time, particularly relevant for material 

subjected to varying environmental conditions or undergoing phase transition. Hierarchical modelling approach could 

be investigated to capture the multiscale nature of material behaviour, from atomic and molecular scale to macroscale 

properties, providing insight into the complex material systems. Integrating uncertainty quantification techniques into 

PGMs would enable researchers to quantify and incorporate uncertainty into model predictions, enhancing the 

robustness and reliability of materials property predictions. The future research direction holds the potential to advance 

the predictions capabilities of PGMs and drive innovation in materials science and engineering. 
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