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Abstract: 

This study explores the application of machine learning for classifying rice leaf diseases, employing the Nu-Support Vector 

Machine (Nu-SVM) algorithm, analyzed through a 5-fold cross-validation approach. The research focuses on 

distinguishing between healthy leaves and those affected by BrownSpot and LeafBlast diseases. The dataset, comprising 

segmented rice leaf images processed using Sobel edge detection and Hu Moments feature extraction, is utilized to train 
and test the model. Results indicate a moderate level of accuracy (52.12% to 53.81%) across the cross-validation folds, 

with precision and recall metrics demonstrating variability and highlighting the challenges in precise disease classification. 

Despite this, the model maintains a consistent ability to identify true positives. The study contributes to the field of precision 

agriculture by showcasing the potential and limitations of using machine learning for plant disease diagnosis. It underscores 
the need for advanced image processing techniques and diverse feature extraction methods to enhance model performance. 

The findings are pivotal for developing more effective, automated diagnostic tools in agriculture, thereby aiding in better 

disease management and potentially improving crop yields. This research serves as a foundational step towards integrating 

machine learning in agricultural disease detection, emphasizing its importance in sustainable farming practices. 
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Dataset link: https://www.kaggle.com/datasets/shayanriyaz/riceleafs/ 

 

1. Introduction 

In the realm of agricultural science, rice stands as a crucial crop, feeding a significant portion of the global 

population. However, the cultivation of this vital grain faces numerous challenges, particularly from various plant 

diseases that can drastically reduce yield and quality. Among these, diseases affecting rice leaves, such as BrownSpot 

and LeafBlast, are of paramount concern. These diseases not only impair the health of the plants but also pose a 

significant threat to food security, especially in regions heavily reliant on rice as a staple food. In this context, the 

early and accurate diagnosis of rice leaf diseases is essential for effective disease management and mitigation. 

Despite the critical nature of this issue, traditional methods for diagnosing plant diseases often rely heavily on 

manual observation by experts, a process that is time-consuming, labour-intensive, and subject to human error. The 

advent of machine learning in agricultural applications presents an opportunity to revolutionize this traditional 

approach. By leveraging advanced computational techniques, it is possible to automate the process of disease 

detection, thereby enhancing accuracy and efficiency. 

The objective of this research is to explore the potential of machine learning in the classification of rice leaf 

diseases. Specifically, the study focuses on the application of a Nu-Support Vector Machine (Nu-SVM) algorithm, a 

variant of the traditional SVM, known for its effectiveness in handling classification problems with a nuanced balance 
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between class separability and data distribution complexity. This research aims to develop a model that can accurately 

differentiate between healthy rice leaves and those afflicted with BrownSpot or LeafBlast diseases. 

Central to this research are several questions: Can machine learning algorithms, particularly Nu-SVM, reliably 

classify rice leaf diseases? How does the performance of the Nu-SVM model compare in terms of accuracy, precision, 

recall, and F1-measure [1], [2] against traditional diagnostic methods? Furthermore, the study investigates the 

effectiveness of image segmentation using the Sobel method [3], [4] and feature extraction via Hu Moments [5], [6] 

in preparing the data for machine learning analysis. 

While the study promises significant contributions to the field of agricultural disease management, it is important 

to acknowledge its limitations. The research relies on a dataset that, while comprehensive, may not encompass all 

variants of rice leaf diseases. Additionally, the computational models used are subject to the inherent limitations of 

machine learning, including the quality and size of the dataset and the potential for overfitting. 

Nevertheless, this research aims to contribute significantly to the field of precision agriculture. By demonstrating 

the efficacy of machine learning in disease classification, it can pave the way for more advanced, automated, and 

accurate diagnostic tools in agriculture. Such advancements not only hold the potential to improve crop management 

and yield but also to enhance food security in rice-dependent regions of the world. 

2. Method: 

The study employs a quantitative research design, focusing on the application and evaluation of machine learning 

algorithms for image classification. The primary objective is to classify images of rice leaves into three categories: 

healthy, BrownSpot-infected, and LeafBlast-infected. The performance of the Nu-SVM model is assessed through 

various metrics such as accuracy, precision, recall, and F1-measure [7], [8]. Our research is designed in five well-

structured main stages, and their aspects are illustrated in Figure 1. 

 

  
 

Figure 1. General Research Design Stages 
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Data Collection Process: Rice leaf disease 

 
Figure 2. Scatter Plot 

The dataset comprises segmented images of rice leaves, categorized into three classes: Healthy (Class 1), 

BrownSpot (Class 2), and LeafBlast (Class 3). These images have been pre-processed using Sobel edge detection for 

segmentation and Hu Moments for feature extraction. The dataset's diversity and representativeness ensure a 

comprehensive analysis across different disease types. The dataset was sourced from kaggle repository, ensuring a 

diverse range of images representing various stages of the three rice leaf conditions. Each image underwent pre-

processing through Sobel segmentation and Hu Moments feature extraction before being inputted into the machine 

learning model. 

 
Figure 3. Splitting Dataset 10 % testing, 90% training 

 

Image Segmentation: Sobel 

The Sobel operator is used for edge detection, highlighting the contours of rice leaves [9]–[11]. It works by 

convolving the image with a pair of 3 × 3 kernels, one estimating the gradient in the 𝑥-direction (horizontal) and the 
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other in the y-direction (vertical). The gradients 𝐺𝑥 and 𝐺𝑦 for each pixel are combined to give the overall gradient 𝐺 

at that point [12]–[14]. 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (1) 

Where 𝐴 is the image matrix, 𝐺𝑥 and 𝐺𝑦 are the horizontal and vertical gradients, respectively. The overall gradient 

magnitude for each pixel is then computed as Figure 4 to 6: 

 

 

Figure 4. Sobel Detection Results for Healthy Class 

 

 

Figure 5. Sobel Detection Results for BrownSpot Class 

 

 

Figure 6. Sobel Detection Results for LeafBlast Class 
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Feature Extraction: Hu Moments 

Hu Moments are invariant to image transformations and provide a robust feature set for pattern recognition. The seven 

Hu Moment invariants are calculated from the normalized central moments of the image [5], [6], [15]. The 𝑛𝑡ℎ order 

central moment is defined as: 

𝜇𝑝𝑞 = ∑ (𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅
𝑥,𝑦

)𝑞𝑓(𝑥, 𝑦) (2) 

Where 𝑓(𝑥, 𝑦) is the pixel intensity at (𝑥, 𝑦), and (𝑥̅, 𝑦̅) is the centroid of the image. 

The Hu moments are derived from these central moments as follows [16]–[18]: 

𝐻1 = 𝜇20 + 𝜇02 

𝐻2 = (𝜇20 + 𝜇02)2 + 4𝜇11
2  

⋮ 
𝐻7 = 𝜇30𝜇12 − 𝜇21𝜇03 − 3𝜇12

2 𝜇03 + 3𝜇21
2 𝜇12 

(3) 

Classification Algorithm: Nu-Super Vector machine (Nu-SVM) 

Nu-SVM [19]–[22], a variant of SVM, is used for classification. It includes a parameter 'nu' which controls the 

number of support vectors and the margin errors. The optimization problem for Nu-SVM is formulated as [23]–[26]. 

𝑚𝑖𝑛𝑤,𝑏,𝜀

1

2
𝑊𝑇𝑊 + 𝐶 ∑ 𝜀𝑖

𝑛

𝑖−1
 (4) 

Subject to 𝑦𝑖 (𝑊
𝑇∅(𝑥𝑖) + 𝑏 ≥ 1 − 𝜀𝑖, 𝜀𝑖 ≥ 0. Where 𝑤 is the weight vector, 𝑏 is the bias, 𝜀 are slack variables, 𝐶 

is the penalty parameter, ∅ is the kernel function, and 𝑦𝑖 are the target labels.  

K-fold Cross-validation:  

The model's performance was evaluated using 5-fold cross-validation and metrics such as accuracy, precision, recall, 

and F1-score [27]–[29]. This comprehensive methodological approach ensures a thorough evaluation of the proposed 

classification system. This process ensures that each sample is used for validation exactly once. The method's 

formulaic representation is. 

CV(𝐾) =
1

𝐾
∑ Error𝑖

𝐾

𝑖=1

 (5) 

 

Performance Comparison Analysis 

Post-validation, the model's performance was assessed using metrics such as accuracy, precision, recall, and F-

measure. Their respective formulae are. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

 

𝑃𝑒𝑟𝑖𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2(𝑝𝑟𝑒𝑠𝑖𝑠𝑖 × 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑠𝑖𝑠𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 

(6) 

The above formulas explain: 

True Positive (TP): The number of cases correctly predicted as positive by the model. 

True Negative (TN): The number of cases correctly predicted as negative by the model. 

False Positive (FP): The number of cases incorrectly predicted as positive by the model. 
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False Negative (FN): The number of cases incorrectly predicted as negative by the model. 

These metrics provided a comprehensive understanding of the model's performance, highlighting its strengths and 

areas of improvement. 

 

3. Results and Discussion 

Results 

The research aimed at classifying rice leaf diseases using the Nu-SVM algorithm, and the results have been 

insightful. The model's performance was evaluated through a 5-fold cross-validation technique, ensuring a robust 

assessment. The accuracy across the five folds ranged from 52.12% to 53.81%, indicating a moderate level of 

predictive capability. However, a closer look at precision, recall, and F1-scores, which provide a more nuanced view 

of the model's performance, revealed some variability. Precision values fluctuated significantly across the folds, with 

the highest being 51.95% in K-1 and the lowest at 37.66% in K-3. Recall, mirroring the accuracy, remained relatively 

consistent, suggesting that the model's ability to identify true positives was stable across different data subsets. The 

F1-Score, a balance between precision and recall, hovered around 39% to 43%, underscoring the challenges in 

achieving high precision without sacrificing recall. The detailed results are presented in Table 1 and visualized in 

Figure 7 for a clearer understanding and comparison of the metrics across different iterations. 

Table 1. Performance Metrics Across 5-Fold Cross-Validation for the Nu-SVM 

K-n 
Performa 

Accuracy Precision Recall F-Measure 

K-1 52% 52% 52% 43% 

K-2 53% 46% 53% 43% 

K-3 54% 38% 54% 40% 

K-4 53% 47% 53% 40% 

K-5 52% 40% 52% 39% 

∑ 𝑨𝒗𝒈 53% 45% 53% 41% 

 

Figure 7. Visualisation Performance Metrics Across 5-Fold Cross-Validation for the Decision Tree 

A tabular representation of these results offers a clear visualization, allowing for an immediate grasp of the model's 

performance nuances across different folds. Such a tabular format is crucial for understanding the specific areas where 

the model excels and where improvement is needed. 
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Figure 8. Boxplot Performance Metrics Across 5-Fold Cross-Validation for the Decision Tree 

The boxplot presented in Figure 8 illustrates the variability and distribution of performance metrics—accuracy, 

precision, recall, and F1-score—derived from the 5-fold cross-validation of the Nu-SVM algorithm applied in rice 

leaf disease classification. Each boxplot encapsulates the interquartile range, median, and outliers for the respective 

performance scores across the cross-validation folds, providing a visual summary of the model's classification 

consistency and areas of potential improvement. 

Discussion 

Interpreting these results, it's evident that while the Nu-SVM model demonstrates a reasonable ability to classify 

rice leaf diseases, there is room for improvement, especially in precision. The moderate accuracy indicates that the 

model, with its current feature set and parameters, captures significant patterns in the data but also struggles with some 

intricacies of the classification task. This variation in precision across folds might be attributed to the inherent 

complexities in the dataset, such as similarities between disease symptoms or variations in image quality. 

Comparing these findings with existing literature, it's clear that machine learning offers a promising avenue for 

agricultural disease classification, yet the challenge lies in fine-tuning models for higher precision without 

compromising on recall. The results align with previous studies that emphasize the difficulty in achieving high 

accuracy in image-based disease classification due to the subtle and varied nature of disease symptoms. 

The practical implications of these results are significant for precision agriculture. The ability to accurately identify 

disease types can lead to more targeted and effective treatment strategies, potentially saving significant resources and 

improving yields. However, the limitations of the current research must be acknowledged. The variability in precision 

across folds suggests that the model may be sensitive to the specific data it's trained on, and the overall moderate 

performance highlights the need for more sophisticated or diverse feature extraction techniques. 

Future research should focus on exploring different image processing and feature extraction methods to enhance 

model accuracy and precision. Additionally, incorporating larger and more diverse datasets could improve the model's 

robustness and generalizability. Further studies might also explore hybrid models or deep learning techniques, which 

have shown promise in other image classification tasks. The ultimate goal is to develop a highly reliable and efficient 

tool for farmers and agricultural specialists to diagnose and manage rice leaf diseases effectively. 

4. Conclusion 

In summary, this research on the classification of rice leaf diseases using the Nu-SVM algorithm has yielded 

important insights, although it has also highlighted certain challenges. The model demonstrated moderate accuracy, 

with values ranging between 52.12% and 53.81% across different folds in the 5-fold cross-validation process. 

However, precision varied considerably, suggesting a need for further refinement in the model's ability to precisely 

classify the diseases. The consistency in recall across folds indicated a stable detection of true positives, but the F1-

scores suggested a balance between precision and recall needs improvement. These findings answer our primary 

research question, affirming that while machine learning, particularly the Nu-SVM algorithm, can be effective in 

classifying rice leaf diseases, achieving high precision and accuracy remains a complex task. The study contributes to 
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the growing body of knowledge in agricultural technology, specifically in the application of machine learning for 

disease detection in crops, highlighting both the potential and the limitations of current methodologies. 

For future research, it is recommended to explore advanced image processing techniques and more diverse feature 

extraction methods to enhance the accuracy and precision of the classification model. The incorporation of larger and 

more varied datasets could also improve the model's robustness and generalizability. Furthermore, experimenting with 

deep learning approaches, which have shown promising results in other areas of image classification, might offer new 

pathways for advancements in this field. In practice, these findings underscore the need for continuous development 

and integration of machine learning tools in agriculture, aiming to provide more efficient, accurate, and cost-effective 

solutions for disease management in crops, thereby supporting sustainable agricultural practices and food security. 
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