Evaluating Thresholding-Based Segmentation and Humoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes
Abstract
This study, titled "Evaluating Thresholding-Based Segmentation and HuMoment Feature Extraction in Acute Lymphoblastic Leukemia Classification using Gaussian Naive Bayes," investigates the application of image processing and machine learning techniques in the classification of Acute Lymphoblastic Leukemia (ALL). Utilizing a dataset of microscopic blood smear images, the research focuses on the efficacy of thresholding-based segmentation and Hu moment feature extraction in distinguishing between benign and malignant cases of ALL. Gaussian Naive Bayes, known for its simplicity and effectiveness, is employed as the classification algorithm. The study adopts a 5-fold cross-validation approach to evaluate the model's performance, with particular emphasis on metrics such as accuracy, precision, recall, and F1-score. Results indicate a high precision rate across all folds, averaging approximately 84.13%, while exhibiting variability in accuracy, recall, and F1-scores. These findings suggest that while the model is effective in identifying malignant cases, further refinements are necessary for improving overall accuracy and consistency. This research contributes to the field of medical image analysis by demonstrating the potential of combining simple yet efficient techniques for the automated diagnosis of hepatological diseases. It highlights the importance of integrating image processing with machine learning to enhance diagnostic accuracy in medical applications.
References
S. Ahmed, Z. A. Ahmed, I. Siddiqui, N. H. Rashid, M. Mansoor, and L. Jafri, “Evaluation of serum ferritin for prediction of severity and mortality in COVID-19- A cross sectional study,” Ann. Med. Surg., vol. 63, Mar. 2021, doi: 10.1016/j.amsu.2021.02.009.
J. Zhang and B. Ghanem, “ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 1828–1837, doi: 10.1109/CVPR.2018.00196.
M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep Residual Shrinkage Networks for Fault Diagnosis,” IEEE Trans. Ind. Informatics, vol. 16, no. 7, pp. 4681–4690, Jul. 2020, doi: 10.1109/TII.2019.2943898.
N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology,” IEEE Trans. Med. Imaging, vol. 36, no. 7, pp. 1550–1560, Jul. 2017, doi: 10.1109/TMI.2017.2677499.
D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1544–1551, Jul. 2018, doi: 10.1109/LRA.2018.2801475.
M. A. El Aziz, A. A. Ewees, and A. E. Hassanien, “Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation,” Expert Syst. Appl., vol. 83, pp. 242–256, Oct. 2017, doi: 10.1016/j.eswa.2017.04.023.
X. Lu et al., “An Outdoor Support Insulator Surface Defects Segmentation Approach via Image Adversarial Reconstruction in High-Speed Railway Traction Substation,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–19, 2022, doi: 10.1109/TIM.2022.3211558.
G. W. Wang and J. P. Zhang, “Automatic Recognition of Hub Classification Based on Machine Vision,” Appl. Mech. Mater., vol. 380–384, pp. 3694–3697, Aug. 2013, doi: 10.4028/www.scientific.net/AMM.380-384.3694.
M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, “Transfer learning for image classification using VGG19: Caltech-101 image data set,” J. Ambient Intell. Humaniz. Comput., vol. 14, no. 4, pp. 3609–3620, Apr. 2023, doi: 10.1007/s12652-021-03488-z.
M. Bahrami and M. Forouzanfar, “Sleep Apnea Detection From Single-Lead ECG: A Comprehensive Analysis of Machine Learning and Deep Learning Algorithms,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022, doi: 10.1109/TIM.2022.3151947.
S. Jayachitra and A. Prasanth, “Multi-Feature Analysis for Automated Brain Stroke Classification Using Weighted Gaussian Naïve Bayes Classifier,” J. Circuits, Syst. Comput., vol. 30, no. 10, p. 2150178, Aug. 2021, doi: 10.1142/S0218126621501784.
P. Palimkar, R. N. Shaw, and A. Ghosh, “Machine Learning Technique to Prognosis Diabetes Disease: Random Forest Classifier Approach,” 2022, pp. 219–244.
S. A. Aljawarneh and R. Vangipuram, “GARUDA: Gaussian dissimilarity measure for feature representation and anomaly detection in Internet of things,” J. Supercomput., vol. 76, no. 6, pp. 4376–4413, Jun. 2020, doi: 10.1007/s11227-018-2397-3.
A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.
X. Zhou et al., “Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation,” J. Nanobiotechnology, vol. 18, no. 1, p. 96, Dec. 2020, doi: 10.1186/s12951-020-00652-z.
C. S. Pak, C. Y. Heo, J. Shin, S. Y. Moon, S.-W. Cho, and H. J. Kang, “Effects of a Catechol-Functionalized Hyaluronic Acid Patch Combined with Human Adipose-Derived Stem Cells in Diabetic Wound Healing,” Int. J. Mol. Sci., vol. 22, no. 5, p. 2632, Mar. 2021, doi: 10.3390/ijms22052632.
S. Menina et al., “Energy Envelope and Attenuation Characteristics of High-Frequency (HF) and Very-High-Frequency (VF) Martian Events,” Bull. Seismol. Soc. Am., vol. 111, no. 6, pp. 3016–3034, Dec. 2021, doi: 10.1785/0120210127.
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Azis, Admojo, Susanti - 2020 - Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah.pdf.
M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 28, pp. 269–274, 2019, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Baharuddin, Hasanuddin, Azis - 2019 - Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca.pdf.
H. Azis, F. Fattah, and P. Putri, “Performa Klasifikasi K-NN dan Cross-validation pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, [Online]. Available: file:///Users/kbh/Downloads/507-2012-5-PB.pdf.