Performance Evaluation of Bagging Meta-Estimator in Lung Disease Detection: A Case Study on Imbalanced Dataset
Abstract
In this study, titled "Performance Evaluation of Bagging Meta-Estimator in Lung Disease Detection: A Case Study on Imbalanced Dataset," we explore the effectiveness of the Bagging Meta-Estimator in diagnosing lung diseases, focusing on the challenges of imbalanced datasets. Utilizing a dataset segmented and characterized by Hu moments and encompassing categories of Normal, Bacterial Pneumonia, and Tuberculosis, the algorithm's performance was assessed through a 5-fold cross-validation. Results indicated moderate effectiveness with an average accuracy of 60.574%, precision of 60.749%, recall of 59.753%, and F1-Score of 59.416%, highlighting variable performance across folds. These findings suggest that while the Bagging Meta-Estimator has potential in medical imaging, further refinement is needed for consistent and reliable lung disease detection, especially in imbalanced datasets.
References
A. Mohanta and S. Panigrahi, “Health Insurance Fraud Detection Using Feature Selection and Ensemble Machine Learning Techniques,” in Advances in Distributed Computing and Machine Learning, 2023, pp. 197–207.
J. Dutta, Y. W. Kim, and D. Dominic, “Comparative Analysis of Various Ensemble Approaches for Web Page Classification,” in Data Engineering and Data Science, Wiley, 2023, pp. 137–172.
J. Zhang and B. Ghanem, “ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 1828–1837, doi: 10.1109/CVPR.2018.00196.
M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep Residual Shrinkage Networks for Fault Diagnosis,” IEEE Trans. Ind. Informatics, vol. 16, no. 7, pp. 4681–4690, Jul. 2020, doi: 10.1109/TII.2019.2943898.
N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi, “A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology,” IEEE Trans. Med. Imaging, vol. 36, no. 7, pp. 1550–1560, Jul. 2017, doi: 10.1109/TMI.2017.2677499.
D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 1544–1551, Jul. 2018, doi: 10.1109/LRA.2018.2801475.
M. A. El Aziz, A. A. Ewees, and A. E. Hassanien, “Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation,” Expert Syst. Appl., vol. 83, pp. 242–256, Oct. 2017, doi: 10.1016/j.eswa.2017.04.023.
X. Lu et al., “An Outdoor Support Insulator Surface Defects Segmentation Approach via Image Adversarial Reconstruction in High-Speed Railway Traction Substation,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–19, 2022, doi: 10.1109/TIM.2022.3211558.
J. Treliński and B. Kwolek, “Ensemble of Multi-channel CNNs for Multi-class Time-Series Classification. Depth-Based Human Activity Recognition,” in Mobile Computing and Sustainable Informatics, 2020, pp. 455–466.
A. Singh and V. Gutte, “Classification of Breast Tumor Using Ensemble Learning,” in Mobile Computing and Sustainable Informatics, 2022, pp. 491–507.
R. R. Kadhim and M. Y. Kamil, “Comparison of breast cancer classification models on Wisconsin dataset,” Int. J. Reconfigurable Embed. Syst., vol. 11, no. 2, p. 166, Jul. 2022, doi: 10.11591/ijres.v11.i2.pp166-174.
M. Ziacchi et al., “Bipolar active fixation left ventricular lead or quadripolar passive fixation lead? An Italian multicenter experience,” J. Cardiovasc. Med., vol. 20, no. 4, pp. 192–200, Apr. 2019, doi: 10.2459/JCM.0000000000000778.
E. K. Shea and R. S. Hess, “Assessment of postprandial hyperglycemia and circadian fluctuation of glucose concentrations in diabetic dogs using a flash glucose monitoring system,” J. Vet. Intern. Med., vol. 35, no. 2, pp. 843–852, Mar. 2021, doi: 10.1111/jvim.16046.
A. Sindy, “Pattern of Patients and Diseases During Mass Transit: The Day of Arafat Experience,” Pakistan J. Med. Sci., vol. 31, no. 5, Sep. 2015, doi: 10.12669/pjms.315.8017.
M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 28, pp. 269–274, 2019, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Baharuddin, Hasanuddin, Azis - 2019 - Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca.pdf.
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Azis, Admojo, Susanti - 2020 - Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah.pdf.
A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.
H. Azis, F. Fattah, and P. Putri, “Performa Klasifikasi K-NN dan Cross-validation pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, [Online]. Available: file:///Users/kbh/Downloads/507-2012-5-PB.pdf.
A. A. Karim, H. Azis, and Y. Salim, “Kinerja Metode C4.5 dalam Penyaluran Bantuan Dana Bencana 1,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 84–87, 2018, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Karim, Azis, Salim - 2018 - Kinerja Metode C4.5 dalam Penyaluran Bantuan Dana Bencana 1.pdf.