Comparative Study on the Performance of the Bagging Algorithm in the Breast Cancer Dataset
Abstract
Breast cancer remains a predominant health concern globally. Early detection, powered by advancements in medical imaging and computational methods, plays a vital role in enhancing survival rates. This research delved into the application and performance of the Bagging algorithm on a Breast Cancer dataset that underwent image segmentation using the Canny method and feature extraction through Hu-Moments. The Bagging algorithm demonstrated moderately consistent performance across a 5-fold cross-validation, with average metrics of 56.9% accuracy, 58.3% precision, 57.7% recall, and 56.6% F-measure. While the results showcased the potential of the Bagging algorithm in classifying breast cancer data, there remains an avenue for further optimization and exploration of other ensemble or deep learning techniques. The findings contribute to the broader domain of machine learning in medical imaging and offer insights for future research directions and clinical diagnostic tool development.
References
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Azis, Admojo, Susanti - 2020 - Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah.pdf.
D. Cahyanti, A. Rahmayani, and S. Ainy, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020.
L. Saiman and R. Satra, “Analisis performa metode Support Vector Machine untuk klasifikasi dataset aroma tahu berformalin,” Indones. J. Data Sci., vol. 2, no. 2, pp. 50–61, 2021, doi: 10.56705/ijodas.v2i2.28.
F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020.
R. S. Wahono and N. Suryana, “Combining particle swarm optimization based feature selection and bagging technique for software defect prediction,” Int. J. Softw. Eng. its Appl., vol. 7, no. 5, pp. 153–166, 2013, doi: 10.14257/ijseia.2013.7.5.16.
N. D. Saputri, “Komparasi Penerapanmetode Bagging Dan Adaboostpada Algoritma C4.5 Untuk Prediksi Penyakit Stroke,” UIN Sunan Ampel Surabaya, 2021.
H. Azis, F. Fattah, and P. Putri, “Performa Klasifikasi K-NN dan Cross-validation pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, [Online]. Available: file:///Users/kbh/Downloads/507-2012-5-PB.pdf.
M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 28, pp. 269–274, 2019, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Baharuddin, Hasanuddin, Azis - 2019 - Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca.pdf.
A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.
M. Radhakrishnan, A. Panneerselvam, and N. Nachimuthu, “Canny edge detection model in mri image segmentation using optimized parameter tuning method,” Intell. Autom. Soft Comput., vol. 26, no. 6, pp. 1185–1199, 2020, doi: 10.32604/iasc.2020.012069.
E. A. Sekehravani, E. Babulak, and M. Masoodi, “Implementing canny edge detection algorithm for noisy image,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1404–1410, 2020, doi: 10.11591/eei.v9i4.1837.
A. Mustopa, H. M. Nawawi, S. Agustiani, and S. K. Wildah, “Feature Extraction With Forest Classifer To Predicate Covid 19 Based On Thorax X-Ray Results,” Sistemasi, vol. 11, no. 2, p. 515, 2022, doi: 10.32520/stmsi.v11i2.1966.
G. Xie, B. Guo, Z. Huang, Y. Zheng, and Y. Yan, “Combination of Dominant Color Descriptor and Hu Moments in Consistent Zone for Content Based Image Retrieval,” IEEE Access, vol. 8, pp. 146284–146299, 2020, doi: 10.1109/ACCESS.2020.3015285.
A. R. Arrahimi, M. K. Ihsan, D. Kartini, M. R. Faisal, and F. Indriani, “Teknik Bagging Dan Boosting Pada Algoritma CART Untuk Klasifikasi Masa Studi Mahasiswa,” J. Sains dan Inform., vol. 5, no. 1, pp. 21–30, 2019, doi: 10.34128/jsi.v5i1.171.
F. Tangguh and Y. Islami, “Analisis performa algoritma Stochastic Gradient Descent ( SGD ) dalam mengklasifikasi tahu berformalin,” Indones. J. Data Sci., vol. 3, no. 1, pp. 1–8, 2022, doi: 10.56705/ijodas.v3i1.42.
A. Maulida, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020.
I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., vol. 2, no. 1, pp. 21–28, 2021, doi: 10.33096/ijodas.v2i1.25.
A. Aisyah and S. Anraeni, “Analisis Penerapan Metode K-Nearest Neighbor (K-NN) pada Dataset Citra Penyakit Malaria,” Indones. J. Data Sci., vol. 3, no. 1, pp. 17–29, 2022, doi: 10.56705/ijodas.v3i1.22.
Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indones. J. Data Sci., vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.
F. T. Admojo and S. R. Jabir, “Analisis performa metode Naïve Bayesh Classifier pada Electronic Nose dalam identifikasi formalin pada tahu,” Indones. J. Data Sci., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.
