Classification Optimization of Skin Cancer Using the Adaboost Algorithm
Abstract
Early detection of melanoma skin cancer is crucial in improving prognosis and saving lives. This research aimed to optimize the classification of melanoma images using the Adaboost algorithm. Employing a dataset of 10,000 melanoma images, the study combined the Canny method for image segmentation, Hu Moments for feature extraction, and the Adaboost algorithm for classification. The 5-fold cross-validation results revealed an average accuracy of 61.52%. While the precision consistently surpassed recall, indicating the model's conservative nature in predicting positive cases. The outcomes align with previous research, emphasizing the challenges in melanoma classification. This study contributes to the domain by showcasing the potential and areas of improvement for machine learning in early melanoma detection. Future research is recommended to explore hybrid models and diversify data sources for enhanced robustness and generalizability.
References
R. Rabbani, I. Wahidah, and I. H. Santoso, “Klasifikasi Data Deteksi Jatuh Menggunakan Machine Learning Dengan Algoritma Adaptive Boosting ( Adaboost ) ( Fall Detection Data Classification Using Machine Learning With Adaptive Boosting ( Adaboost ) Algorithm ),” e-Proceeding Eng., vol. 8, no. 5, pp. 5053–5063, 2021.
N. D. Saputri, “Komparasi Penerapanmetode Bagging Dan Adaboostpada Algoritma C4.5 Untuk Prediksi Penyakit Stroke,” UIN Sunan Ampel Surabaya, 2021.
L. Britanthia, C. Tanujaya, B. Susanto, and A. Saragih, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Fitur Mode Audio Spotify,” Indones. J. Data Sci., vol. 1, no. 3, pp. 68–78, 2020.
I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., vol. 2, no. 1, pp. 21–28, 2021, doi: 10.33096/ijodas.v2i1.25.
D. Pradana, M. Luthfi Alghifari, M. Farhan Juna, and D. Palaguna, “Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network,” Indones. J. Data Sci., vol. 3, no. 2, pp. 55–60, 2022, doi: 10.56705/ijodas.v3i2.35.
F. T. Admojo and S. R. Jabir, “Analisis performa metode Naïve Bayesh Classifier pada Electronic Nose dalam identifikasi formalin pada tahu,” Indones. J. Data Sci., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.
H. Azis, “Analisis Performa Metode Support Vector Regression ( SVR ) dalam Memprediksi Harga Bahan Sembako Nasional,” Indones. J. Data Sci., vol. xx, no. 200, 2021.
H. Azis, F. Fattah, and P. Putri, “Performa Klasifikasi K-NN dan Cross-validation pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, [Online]. Available: file:///Users/kbh/Downloads/507-2012-5-PB.pdf.
A. Fitria and H. Azis, “Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 102–106, 2018, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Fitria, Azis - 2018 - Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier.pdf.
F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020.
A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.
M. Radhakrishnan, A. Panneerselvam, and N. Nachimuthu, “Canny edge detection model in mri image segmentation using optimized parameter tuning method,” Intell. Autom. Soft Comput., vol. 26, no. 6, pp. 1185–1199, 2020, doi: 10.32604/iasc.2020.012069.
E. A. Sekehravani, E. Babulak, and M. Masoodi, “Implementing canny edge detection algorithm for noisy image,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1404–1410, 2020, doi: 10.11591/eei.v9i4.1837.
G. Xie, B. Guo, Z. Huang, Y. Zheng, and Y. Yan, “Combination of Dominant Color Descriptor and Hu Moments in Consistent Zone for Content Based Image Retrieval,” IEEE Access, vol. 8, pp. 146284–146299, 2020, doi: 10.1109/ACCESS.2020.3015285.
A. Mustopa, H. M. Nawawi, S. Agustiani, and S. K. Wildah, “Feature Extraction With Forest Classifer To Predicate Covid 19 Based On Thorax X-Ray Results,” Sistemasi, vol. 11, no. 2, p. 515, 2022, doi: 10.32520/stmsi.v11i2.1966.
A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020, doi: 10.32736/sisfokom.v9i3.1023.
A. Aisyah and S. Anraeni, “Analisis Penerapan Metode K-Nearest Neighbor (K-NN) pada Dataset Citra Penyakit Malaria,” Indones. J. Data Sci., vol. 3, no. 1, pp. 17–29, 2022, doi: 10.56705/ijodas.v3i1.22.
D. Cahyanti, A. Rahmayani, and S. Ainy, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020.
L. Saiman and R. Satra, “Analisis performa metode Support Vector Machine untuk klasifikasi dataset aroma tahu berformalin,” Indones. J. Data Sci., vol. 2, no. 2, pp. 50–61, 2021, doi: 10.56705/ijodas.v2i2.28.
Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indones. J. Data Sci., vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.