Application of the K-Nearest Neighbors (KNN) Algorithm on the Brain Tumor Dataset
Abstract
Brain tumors pose significant challenges in the medical domain, necessitating advanced diagnostic techniques for early and accurate detection. This research paper presents a comprehensive study on the application of the K-Nearest Neighbors (KNN) algorithm to a dataset comprising brain tumor images. The methodology involved segmenting the images using the Canny method, extracting relevant features via Hu Moments, and subsequently employing the KNN algorithm for classification. Using a 5-fold cross-validation, the system consistently achieved an average accuracy of approximately 62%. These findings highlight the potential of traditional machine learning algorithms in medical imaging, providing valuable insights for both researchers and practitioners. While the results are promising, the study also underscores the importance of integrating such algorithms with other diagnostic methods for optimal results
References
E. Firasari, U. Khultsum, M. N. Winnarto, and R. Risnandar, “Kombinasi K-NN dan Gradient Boosted Trees untuk Klasifikasi Penerima Program Bantuan Sosial,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1231, 2020, doi: 10.25126/jtiik.0813087.
A. Tangkelayuk and E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN , Naïve Bayes Dan Decision Tree,” vol. 9, no. 2, pp. 1109–1119, 2022.
A. Aisyah and S. Anraeni, “Analisis Penerapan Metode K-Nearest Neighbor (K-NN) pada Dataset Citra Penyakit Malaria,” Indones. J. Data Sci., vol. 3, no. 1, pp. 17–29, 2022, doi: 10.56705/ijodas.v3i1.22.
I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., vol. 2, no. 1, pp. 21–28, 2021, doi: 10.33096/ijodas.v2i1.25.
A. Maulida, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020.
F. T. Admojo and S. R. Jabir, “Analisis performa metode Naïve Bayesh Classifier pada Electronic Nose dalam identifikasi formalin pada tahu,” Indones. J. Data Sci., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.
H. Azis, “Analisis Performa Metode Support Vector Regression ( SVR ) dalam Memprediksi Harga Bahan Sembako Nasional,” Indones. J. Data Sci., vol. xx, no. 200, 2021.
S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.
F. Tangguh and Y. Islami, “Analisis performa algoritma Stochastic Gradient Descent ( SGD ) dalam mengklasifikasi tahu berformalin,” Indones. J. Data Sci., vol. 3, no. 1, pp. 1–8, 2022, doi: 10.56705/ijodas.v3i1.42.
A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.
M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 28, pp. 269–274, 2019, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Baharuddin, Hasanuddin, Azis - 2019 - Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca.pdf.
H. Azis, F. Fattah, and P. Putri, “Performa Klasifikasi K-NN dan Cross-validation pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, [Online]. Available: file:///Users/kbh/Downloads/507-2012-5-PB.pdf.
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Azis, Admojo, Susanti - 2020 - Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah.pdf.
A. Fitria and H. Azis, “Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 102–106, 2018, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Fitria, Azis - 2018 - Analisis Kinerja Sistem Klasifikasi Skripsi menggunakan Metode Naïve Bayes Classifier.pdf.
M. Radhakrishnan, A. Panneerselvam, and N. Nachimuthu, “Canny edge detection model in mri image segmentation using optimized parameter tuning method,” Intell. Autom. Soft Comput., vol. 26, no. 6, pp. 1185–1199, 2020, doi: 10.32604/iasc.2020.012069.
E. A. Sekehravani, E. Babulak, and M. Masoodi, “Implementing canny edge detection algorithm for noisy image,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1404–1410, 2020, doi: 10.11591/eei.v9i4.1837.
W. Hidayatillah and M. Jakfar, “Klasifikasi Batik di Jawa Timur Berdasarkan Analisis Dimensi Fraktal Dengan Menggunakan Metode Box Counting,” MATHunesa J. Ilm. Mat., vol. 10, no. 2, pp. 349–358, 2022, doi: 10.26740/mathunesa.v10n2.p349-358.
A. Mustopa, H. M. Nawawi, S. Agustiani, and S. K. Wildah, “Feature Extraction With Forest Classifer To Predicate Covid 19 Based On Thorax X-Ray Results,” Sistemasi, vol. 11, no. 2, p. 515, 2022, doi: 10.32520/stmsi.v11i2.1966.
G. Xie, B. Guo, Z. Huang, Y. Zheng, and Y. Yan, “Combination of Dominant Color Descriptor and Hu Moments in Consistent Zone for Content Based Image Retrieval,” IEEE Access, vol. 8, pp. 146284–146299, 2020, doi: 10.1109/ACCESS.2020.3015285.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.