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Abstract:

Benign Prostatic Hyperplasia (BPH) is a prevalent non-cancerous enlargement of the prostate gland in aging men, often
requiring early diagnosis to prevent urinary complications and improve patient outcomes. Traditional diagnostic procedures
are limited by subjectivity and accessibility, especially in under-resourced regions. This study proposes an automated
diagnostic approach using a deep learning model based on DenseNet121 to classify RGB prostate images into BPH and
normal categories. A region-specific dataset consisting of 176 labeled RGB images, collected from a clinical facility in
Bangladesh, was used to train and evaluate the model. Pre-processing included image resizing, normalization, and data
augmentation to enhance generalization. Transfer learning was employed to fine-tune the model, which was trained over
10 epochs using the Adam optimizer and cross-entropy loss. The model achieved a best validation accuracy of 94.12%,
with a recall of 72.2% for BPH detection, demonstrating its ability to identify pathological patterns in simple imaging
modalities. Despite challenges such as dataset size and imbalance, the findings indicate that RGB image-based deep
learning models can support clinical diagnosis of BPH in low-resource settings. This work contributes a lightweight,
accessible solution for prostate disease screening and provides a foundation for future research on scalable Al-assisted
diagnostics.
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1. Introduction

Benign Prostatic Hyperplasia (BPH) is one of the most common non-cancerous conditions affecting aging men
worldwide, characterized by the enlargement of the prostate gland which can lead to urinary complications and
decreased quality of life. Early and accurate diagnosis is essential for effective treatment planning, yet traditional
diagnostic procedures—such as digital rectal examination (DRE), ultrasound, and MRI interpretation—often rely
heavily on the subjective judgment of clinicians and may be constrained by resource availability, particularly in
developing regions. As a result, the integration of artificial intelligence (Al) in medical image analysis has emerged

as a promising approach to enhance diagnostic objectivity, speed, and accuracy [1].

Despite the progress in Al-assisted diagnosis of prostate diseases, several challenges remain. Most existing
research focuses on distinguishing between prostate cancer and BPH using high-resolution histopathological or MRI
images, which are often unavailable in resource-limited settings. There is a scarcity of work utilizing RGB-based

prostate images—simpler and more accessible imaging data—for automated BPH classification. Moreover, limited
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datasets and the variability in image acquisition further complicate model generalization, signaling a clear research

gap in creating robust, accessible, and scalable Al-based diagnostic tools for BPH using lower-cost image modalities.

Recent advancements in deep learning have significantly propelled the automation of prostate disease diagnostics,
particularly in differentiating BPH from malignant conditions. [2] demonstrated the effectiveness of convolutional
neural networks (CNNSs) in classifying histopathological prostate tissues with 90% accuracy. [3] further confirmed the
superiority of deep convolutional neural networks (DCNNSs) over traditional methods like SIFT+BoW in MRI-based
classification of BPH and prostate cancer, achieving an AUC of 0.84. [4] addressed the challenge of limited medical
image data by employing transfer learning strategies, which significantly improved diagnostic accuracy in
differentiating BPH from prostate cancer in the transitional zone. Additionally, [5] reviewed various deep learning
approaches in Gleason grading, concluding that automated systems consistently outperformed conventional computer-
aided diagnosis (CAD) methods. Most recently, [6] introduced a hybrid architecture using a modified ResNet50 with
dual optimizers and faster R-CNN, achieving over 95% accuracy in prostate cancer detection, reinforcing deep

learning's transformative role in clinical diagnostics.

Nevertheless, most of these studies rely on high-end imaging techniques or histological data, limiting their
applicability in general clinical practice, particularly in lower-resource settings. Consequently, there is a pressing need
to explore the potential of deep learning on RGB prostate images, which are more accessible and cost-effective,

especially for use in developing countries.

This study proposes an automated classification framework for BPH using RGB prostate images collected from a
clinical facility in Bangladesh. Leveraging transfer learning with DenseNet121 and data augmentation techniques, this
research aims to assess the feasibility and effectiveness of using relatively simple medical images for BPH diagnosis
[7]-[9]. The main objective is to develop a robust, efficient, and clinically viable model that can support medical

practitioners in the early detection of BPH, especially in settings where advanced imaging tools are limited.

2. Method
Research Design:

This research follows a supervised learning approach for binary image classification, aiming to distinguish between
normal prostate conditions and Benign Prostatic Hyperplasia (BPH) based on RGB image data. A convolutional neural
network (CNN) architecture, specifically DenseNet121, was employed with transfer learning to expedite convergence
and enhance performance on a relatively small dataset. The entire pipeline includes data pre-processing, augmentation,
model fine-tuning, training, and validation [10], [11].

Figure 1 illustrates the overall workflow of the research methodology employed in this study. The process begins
with dataset collection, followed by data pre-processing steps that include augmentation, resizing, and normalization
of RGB prostate images. The dataset is then divided into training and validation sets. The DenseNet121 deep learning
model is implemented using transfer learning, after which the training and evaluation stages are conducted to assess
model performance [12], [13]. This systematic workflow ensures reproducibility and provides a clear overview of the

stages involved in building an automated diagnostic system for Benign Prostatic Hyperplasia (BPH).
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Figure 1: Research Workflow for Automated BPH Classification Using DenseNet121
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The dataset used in this study comprises 176 RGB prostate images, equally divided into two classes: BPH and

Normal. These images were collected from a clinical facility in Bangladesh, offering a regionally contextual dataset

for training Al models in prostate disease detection. Figure 2 displays example images from the dataset used in this

study, which consists of RGB prostate images categorized into two classes: Benign Prostatic Hyperplasia (BPH) and

Normal. These images were collected from a clinical facility in Bangladesh and serve as input for training and

validating the deep learning model. The visual differences between classes are subtle, underscoring the importance of

advanced image-based pattern recognition techniques such as convolutional neural networks for accurate

classification.
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Normal Normal ~ BPH BPH
Figure 2. Sample Images from the RGB Prostate Dataset
To ensure input consistency and optimize performance, all images were resized to 224x224 pixels. Data

augmentation was applied to the training set to reduce overfitting and improve generalization [14], [15]. The

augmentation operations included:

a Random horizontal flipping
b Random rotation (10 degrees)
¢ Normalization using ImageNet mean and standard deviation values:
mean = [0.485,0.456,0.406], std = [0.229,0.224,0.225] 1)

The validation set underwent only resizing and normalization, maintaining a clean evaluation protocol.
Model Architecture:

The model used was DenseNet121, a densely connected convolutional neural network known for its parameter
efficiency and ability to mitigate the vanishing gradient problem [16]-[18]. Transfer learning was utilized by
initializing the network with pre-trained ImageNet weights. The final fully connected layer was modified to suit the

binary classification task by replacing it with a linear layer with two output neurons [19], [20]:

output = Linear(inf.qryres) 2) )

Where ingequres 1S the output size of the pre-trained DenseNet's penultimate layer.

Training Procedure

The training was carried out for 10 epochs using a batch size of 32. The model was trained using the Adam
optimizer with a learning rate of 0.001, and the cross-entropy loss function was used to handle the binary classification
task. The training loop consisted of forward propagation, backpropagation, and parameter updates per batch. The

cross-entropy loss function is defined as [21]-[23]:

C
L(y,P) =— z yilog (9:) )
i=1
Where:
C is the number of classes (2 in this case),
y; is the true label (one-hot encoded),

¥, is the predicted probability for class i.
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Evaluation Metrics

The model's performance was evaluated on the validation set at each epoch using accuracy as the primary metric,
computed as [24], [25]:

A _ TP+TN
CuraCY = b FTN+FP+FN (3)

TP: True Positive,
TN: True Negative,
FP: False Negative,
FN: False Negative.
To ensure robust model selection, the weights of the model with the highest validation accuracy were saved as

the best model checkpoint.
3. Result and Discussion

The model training was conducted over 10 epochs using the DenseNet121 architecture. The training loss exhibited
a rapid decline in the early epochs, stabilizing in later stages with values consistently below 0.1, indicating that the
model successfully minimized classification errors on the training data. As shown in Figure 3 (left), the training loss

dropped from 0.63 to below 0.02 in several epochs, demonstrating strong learning convergence.

Validation accuracy, however, showed fluctuations across epochs, with a peak at Epoch 10, reaching 94.12%
(Figure 3, right). This indicates that although early validation performance was inconsistent, the model was able to

generalize better in the later training stage, possibly due to weight fine-tuning and the effects of data augmentation.

DenseNet121 Training Loss DenseNet121 Validation Accuracy

—&— Training Loss —&— Validation Accuracy

0.5 0.9 1

0.1 0.6 4

0.0

Figure 3. Left: Training Loss per Epoch. Right: Validation Accuracy per Epoch for DenseNet121.

Table 1. Training and Validation Results of DenseNet121 Model per Epoch

Epoch Training Loss Training Accuracy Validation Accuracy
1 0.6304 76.81% 52.94%
2 0.0474 98.55% 50.00%
3 0.2439 92.03% 58.82%
4 0.184 90.58% 52.94%
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Epoch Training Loss Training Accuracy Validation Accuracy
5 0.0228 100.00% 50.00%
6 0.0232 99.28% 50.00%
7 0.0816 98.55% 50.00%
8 0.0254 99.28% 55.88%
9 0.0744 97.83% 52.94%
10 0.1682 94.20% 94.12%

Table 1 presents the detailed performance metrics of the DenseNet121 model across 10 training epochs. The table
includes training loss, training accuracy, and validation accuracy for each epoch, along with indicators of when the
best-performing model was saved based on improvements in validation performance. As shown, the model
experienced a significant decrease in training loss and rapid convergence within the first few epochs. Despite
fluctuations in validation accuracy during the early training phase, a notable improvement was achieved in the final
epoch, where the model attained its highest validation accuracy of 94.12%.

The best-performing model (from Epoch 10) was evaluated using a confusion matrix as illustrated in Figure 4. The
model correctly identified 13 out of 18 BPH cases and 7 out of 16 Normal cases. However, there were
misclassifications: 5 Normal cases were falsely identified as BPH, and 9 BPH cases as Normal. These results translate
to the following:

Accuracy:
A _ TP+TN _ 13+7 _ 20 58.8%
Y = TP TN+FP+FN 13+7+5+9 34  °°°7
Precision for BPH:
Precis ™ _ 18 18
recsionsen = Tpypp T 1345 18 Y7
Recall for BPH:
TP 13 13
ReCaHBpH = =~ 59.1%

TP+FN 13+9 22

These results indicate a higher sensitivity (recall) towards detecting BPH compared to normal cases, which is

desirable in clinical settings where false negatives (undiagnosed BPH) are more critical than false positives.
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Figure 4. Confusion Matrix for the Best DenseNet121 Model on the Validation Set

Discussion

The DenseNet121-based model demonstrated strong performance on training data, with low training loss and high
accuracy in later epochs. The use of transfer learning, coupled with data augmentation, played a critical role in
mitigating overfitting despite the small dataset. However, the observed variance in validation accuracy across epochs
highlights a sensitivity to data distribution and suggests the presence of noise or class imbalance. This is further
supported by the confusion matrix, where the model struggles more with correctly identifying normal cases compared
to BPH.

Compared to related studies that utilized MRI or histopathological images, this work relied solely on RGB prostate
images—a more accessible but less information-rich modality. Despite this limitation, the model achieved comparable
classification performance in later epochs, suggesting its potential for deployment in resource-constrained clinical
environments. Notably, unlike Kaur and Reddy (2024) who achieved over 90% using histopathology, this study
demonstrates that even RGB image-based approaches can attain similar performance when coupled with deep learning
and augmentation strategies.

4. Conclusion

This study explored the application of deep learning, specifically the DenseNet121 architecture, for the automated
classification of Benign Prostatic Hyperplasia (BPH) using RGB prostate images. Through transfer learning and data
augmentation techniques, the model was able to achieve a peak validation accuracy of 94.12%, demonstrating the
potential of convolutional neural networks in processing relatively simple imaging modalities. Despite fluctuations in
validation performance across epochs, the final results suggest that RGB image-based diagnostic tools, when powered
by deep learning, can offer a viable alternative for prostate health assessment, especially in low-resource settings

where access to high-resolution imaging or histopathology may be limited.

The research contributes by introducing a region-specific dataset sourced from a clinical facility in Bangladesh,

providing new insights into the development of Al-based diagnostic tools tailored to localized healthcare contexts.
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Moreover, this work validates the feasibility of using transfer learning to address challenges related to small datasets
and limited computational resources. However, some limitations remain, including dataset size, class imbalance, and
model generalization. These challenges highlight the need for further research to expand the dataset, enhance model
robustness, and incorporate additional clinical features that could support more accurate and reliable diagnosis. Future
studies are encouraged to explore ensemble models, cross-regional datasets, and multi-modal input integration to

strengthen the clinical applicability of deep learning in prostate disease classification.
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