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Abstract: 

Benign Prostatic Hyperplasia (BPH) is a prevalent non-cancerous enlargement of the prostate gland in aging men, often 

requiring early diagnosis to prevent urinary complications and improve patient outcomes. Traditional diagnostic procedures 

are limited by subjectivity and accessibility, especially in under-resourced regions. This study proposes an automated 
diagnostic approach using a deep learning model based on DenseNet121 to classify RGB prostate images into BPH and 

normal categories. A region-specific dataset consisting of 176 labeled RGB images, collected from a clinical facility in 

Bangladesh, was used to train and evaluate the model. Pre-processing included image resizing, normalization, and data 
augmentation to enhance generalization. Transfer learning was employed to fine-tune the model, which was trained over 

10 epochs using the Adam optimizer and cross-entropy loss. The model achieved a best validation accuracy of 94.12%, 

with a recall of 72.2% for BPH detection, demonstrating its ability to identify pathological patterns in simple imaging 

modalities. Despite challenges such as dataset size and imbalance, the findings indicate that RGB image-based deep 
learning models can support clinical diagnosis of BPH in low-resource settings. This work contributes a lightweight, 

accessible solution for prostate disease screening and provides a foundation for future research on scalable AI-assisted 

diagnostics. 
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1. Introduction 

Benign Prostatic Hyperplasia (BPH) is one of the most common non-cancerous conditions affecting aging men 

worldwide, characterized by the enlargement of the prostate gland which can lead to urinary complications and 

decreased quality of life. Early and accurate diagnosis is essential for effective treatment planning, yet traditional 

diagnostic procedures—such as digital rectal examination (DRE), ultrasound, and MRI interpretation—often rely 

heavily on the subjective judgment of clinicians and may be constrained by resource availability, particularly in 

developing regions. As a result, the integration of artificial intelligence (AI) in medical image analysis has emerged 

as a promising approach to enhance diagnostic objectivity, speed, and accuracy [1]. 

Despite the progress in AI-assisted diagnosis of prostate diseases, several challenges remain. Most existing 

research focuses on distinguishing between prostate cancer and BPH using high-resolution histopathological or MRI 

images, which are often unavailable in resource-limited settings. There is a scarcity of work utilizing RGB-based 

prostate images—simpler and more accessible imaging data—for automated BPH classification. Moreover, limited 
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datasets and the variability in image acquisition further complicate model generalization, signaling a clear research 

gap in creating robust, accessible, and scalable AI-based diagnostic tools for BPH using lower-cost image modalities. 

Recent advancements in deep learning have significantly propelled the automation of prostate disease diagnostics, 

particularly in differentiating BPH from malignant conditions. [2] demonstrated the effectiveness of convolutional 

neural networks (CNNs) in classifying histopathological prostate tissues with 90% accuracy. [3] further confirmed the 

superiority of deep convolutional neural networks (DCNNs) over traditional methods like SIFT+BoW in MRI-based 

classification of BPH and prostate cancer, achieving an AUC of 0.84. [4] addressed the challenge of limited medical 

image data by employing transfer learning strategies, which significantly improved diagnostic accuracy in 

differentiating BPH from prostate cancer in the transitional zone. Additionally, [5] reviewed various deep learning 

approaches in Gleason grading, concluding that automated systems consistently outperformed conventional computer-

aided diagnosis (CAD) methods. Most recently, [6] introduced a hybrid architecture using a modified ResNet50 with 

dual optimizers and faster R-CNN, achieving over 95% accuracy in prostate cancer detection, reinforcing deep 

learning's transformative role in clinical diagnostics. 

Nevertheless, most of these studies rely on high-end imaging techniques or histological data, limiting their 

applicability in general clinical practice, particularly in lower-resource settings. Consequently, there is a pressing need 

to explore the potential of deep learning on RGB prostate images, which are more accessible and cost-effective, 

especially for use in developing countries. 

This study proposes an automated classification framework for BPH using RGB prostate images collected from a 

clinical facility in Bangladesh. Leveraging transfer learning with DenseNet121 and data augmentation techniques, this 

research aims to assess the feasibility and effectiveness of using relatively simple medical images for BPH diagnosis 

[7]–[9]. The main objective is to develop a robust, efficient, and clinically viable model that can support medical 

practitioners in the early detection of BPH, especially in settings where advanced imaging tools are limited. 

2. Method 

Research Design: 

This research follows a supervised learning approach for binary image classification, aiming to distinguish between 

normal prostate conditions and Benign Prostatic Hyperplasia (BPH) based on RGB image data. A convolutional neural 

network (CNN) architecture, specifically DenseNet121, was employed with transfer learning to expedite convergence 

and enhance performance on a relatively small dataset. The entire pipeline includes data pre-processing, augmentation, 

model fine-tuning, training, and validation [10], [11].  

Figure 1 illustrates the overall workflow of the research methodology employed in this study. The process begins 

with dataset collection, followed by data pre-processing steps that include augmentation, resizing, and normalization 

of RGB prostate images. The dataset is then divided into training and validation sets. The DenseNet121 deep learning 

model is implemented using transfer learning, after which the training and evaluation stages are conducted to assess 

model performance [12], [13]. This systematic workflow ensures reproducibility and provides a clear overview of the 

stages involved in building an automated diagnostic system for Benign Prostatic Hyperplasia (BPH). 
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Figure 1: Research Workflow for Automated BPH Classification Using DenseNet121 

Dataset and Pre-processing: 

The dataset used in this study comprises 176 RGB prostate images, equally divided into two classes: BPH and 

Normal. These images were collected from a clinical facility in Bangladesh, offering a regionally contextual dataset 

for training AI models in prostate disease detection. Figure 2 displays example images from the dataset used in this 

study, which consists of RGB prostate images categorized into two classes: Benign Prostatic Hyperplasia (BPH) and 

Normal. These images were collected from a clinical facility in Bangladesh and serve as input for training and 

validating the deep learning model. The visual differences between classes are subtle, underscoring the importance of 

advanced image-based pattern recognition techniques such as convolutional neural networks for accurate 

classification. 
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Normal Normal BPH BPH 

Figure 2. Sample Images from the RGB Prostate Dataset 

To ensure input consistency and optimize performance, all images were resized to 224×224 pixels. Data 

augmentation was applied to the training set to reduce overfitting and improve generalization [14], [15]. The 

augmentation operations included: 

a Random horizontal flipping 

b Random rotation (±10 degrees) 

c Normalization using ImageNet mean and standard deviation values: 

𝑚𝑒𝑎𝑛 = [0.485,0.456,0.406],    std = [0.229,0.224,0.225] (1) 

The validation set underwent only resizing and normalization, maintaining a clean evaluation protocol. 

Model Architecture: 

The model used was DenseNet121, a densely connected convolutional neural network known for its parameter 

efficiency and ability to mitigate the vanishing gradient problem [16]–[18]. Transfer learning was utilized by 

initializing the network with pre-trained ImageNet weights. The final fully connected layer was modified to suit the 

binary classification task by replacing it with a linear layer with two output neurons [19], [20]: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑖𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , 2) (2) 

Where 𝑖𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the output size of the pre-trained DenseNet's penultimate layer. 

Training Procedure 

The training was carried out for 10 epochs using a batch size of 32. The model was trained using the Adam 

optimizer with a learning rate of 0.001, and the cross-entropy loss function was used to handle the binary classification 

task. The training loop consisted of forward propagation, backpropagation, and parameter updates per batch. The 

cross-entropy loss function is defined as [21]–[23]: 

ℒ(𝑦, 𝑦̂) = − ∑ 𝑦𝑖log (𝑦̂𝑖)

𝐶

𝑖=1

 (2) 

Where: 

𝐶 is the number of classes (2 in this case), 

𝑦𝑖 is the true label (one-hot encoded), 

𝑦̂𝑖 is the predicted probability for class 𝑖. 
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Evaluation Metrics 

The model's performance was evaluated on the validation set at each epoch using accuracy as the primary metric, 

computed as [24], [25]: 

Accuracy =
TP+TN

TP+TN+FP+FN
 (3) 

𝑇𝑃: True Positive, 

𝑇𝑁: True Negative, 

𝐹𝑃: False Negative, 

𝐹𝑁: False Negative. 

To ensure robust model selection, the weights of the model with the highest validation accuracy were saved as 

the best model checkpoint. 

3. Result and Discussion 

The model training was conducted over 10 epochs using the DenseNet121 architecture. The training loss exhibited 

a rapid decline in the early epochs, stabilizing in later stages with values consistently below 0.1, indicating that the 

model successfully minimized classification errors on the training data. As shown in Figure 3 (left), the training loss 

dropped from 0.63 to below 0.02 in several epochs, demonstrating strong learning convergence. 

Validation accuracy, however, showed fluctuations across epochs, with a peak at Epoch 10, reaching 94.12% 

(Figure 3, right). This indicates that although early validation performance was inconsistent, the model was able to 

generalize better in the later training stage, possibly due to weight fine-tuning and the effects of data augmentation. 

 

Figure 3. Left: Training Loss per Epoch. Right: Validation Accuracy per Epoch for DenseNet121. 

Table 1. Training and Validation Results of DenseNet121 Model per Epoch 

Epoch Training Loss Training Accuracy Validation Accuracy 

1 0.6304 76.81% 52.94% 

2 0.0474 98.55% 50.00% 

3 0.2439 92.03% 58.82% 

4 0.184 90.58% 52.94% 
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Epoch Training Loss Training Accuracy Validation Accuracy 

5 0.0228 100.00% 50.00% 

6 0.0232 99.28% 50.00% 

7 0.0816 98.55% 50.00% 

8 0.0254 99.28% 55.88% 

9 0.0744 97.83% 52.94% 

10 0.1682 94.20% 94.12% 

Table 1 presents the detailed performance metrics of the DenseNet121 model across 10 training epochs. The table 

includes training loss, training accuracy, and validation accuracy for each epoch, along with indicators of when the 

best-performing model was saved based on improvements in validation performance. As shown, the model 

experienced a significant decrease in training loss and rapid convergence within the first few epochs. Despite 

fluctuations in validation accuracy during the early training phase, a notable improvement was achieved in the final 

epoch, where the model attained its highest validation accuracy of 94.12%. 

The best-performing model (from Epoch 10) was evaluated using a confusion matrix as illustrated in Figure 4. The 

model correctly identified 13 out of 18 BPH cases and 7 out of 16 Normal cases. However, there were 

misclassifications: 5 Normal cases were falsely identified as BPH, and 9 BPH cases as Normal. These results translate 

to the following: 

Accuracy: 

Accuracy =
TP+TN

TP+TN+FP+FN
=

13 + 7

13 + 7 + 5 + 9
=

20

34
≈ 58.8% 

Precision for BPH: 

Precision𝐵𝑃𝐻 =
TP

TP+FP
=

13

13 + 5
=

13

18
≈ 72.2% 

Recall for BPH: 

Recall𝐵𝑃𝐻 =
TP

TP+FN
=

13

13 + 9
=

13

22
≈ 59.1% 

These results indicate a higher sensitivity (recall) towards detecting BPH compared to normal cases, which is 

desirable in clinical settings where false negatives (undiagnosed BPH) are more critical than false positives. 
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Figure 4. Confusion Matrix for the Best DenseNet121 Model on the Validation Set 

Discussion 

The DenseNet121-based model demonstrated strong performance on training data, with low training loss and high 

accuracy in later epochs. The use of transfer learning, coupled with data augmentation, played a critical role in 

mitigating overfitting despite the small dataset. However, the observed variance in validation accuracy across epochs 

highlights a sensitivity to data distribution and suggests the presence of noise or class imbalance. This is further 

supported by the confusion matrix, where the model struggles more with correctly identifying normal cases compared 

to BPH. 

Compared to related studies that utilized MRI or histopathological images, this work relied solely on RGB prostate 

images—a more accessible but less information-rich modality. Despite this limitation, the model achieved comparable 

classification performance in later epochs, suggesting its potential for deployment in resource-constrained clinical 

environments. Notably, unlike Kaur and Reddy (2024) who achieved over 90% using histopathology, this study 

demonstrates that even RGB image-based approaches can attain similar performance when coupled with deep learning 

and augmentation strategies. 

4. Conclusion 

This study explored the application of deep learning, specifically the DenseNet121 architecture, for the automated 

classification of Benign Prostatic Hyperplasia (BPH) using RGB prostate images. Through transfer learning and data 

augmentation techniques, the model was able to achieve a peak validation accuracy of 94.12%, demonstrating the 

potential of convolutional neural networks in processing relatively simple imaging modalities. Despite fluctuations in 

validation performance across epochs, the final results suggest that RGB image-based diagnostic tools, when powered 

by deep learning, can offer a viable alternative for prostate health assessment, especially in low-resource settings 

where access to high-resolution imaging or histopathology may be limited. 

The research contributes by introducing a region-specific dataset sourced from a clinical facility in Bangladesh, 

providing new insights into the development of AI-based diagnostic tools tailored to localized healthcare contexts. 
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Moreover, this work validates the feasibility of using transfer learning to address challenges related to small datasets 

and limited computational resources. However, some limitations remain, including dataset size, class imbalance, and 

model generalization. These challenges highlight the need for further research to expand the dataset, enhance model 

robustness, and incorporate additional clinical features that could support more accurate and reliable diagnosis. Future 

studies are encouraged to explore ensemble models, cross-regional datasets, and multi-modal input integration to 

strengthen the clinical applicability of deep learning in prostate disease classification. 
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