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Abstract: 

Obesity poses a significant global health risk due to its links to conditions such as diabetes, cardiovascular disease, and 

various cancers, underscoring the need for early prediction to enable timely intervention. This study evaluated the 
performance of seven machine learning algorithms—Logistic Regression, Decision Tree, Random Forest, ExtraTrees, 

Gradient Boosting, AdaBoost, and XGBoost—in predicting obesity using health and lifestyle data. The models were 

assessed based on accuracy, precision, recall, and F1-score, with hyperparameter tuning applied for optimization. The 
results confirmed that the ExtraTrees Classifier was the best performer, achieving an accuracy of 92.6%, precision of 

92.7%, recall of 92.8%, and F1-score of 92.7%. Both Random Forest (91.3% accuracy) and XGBoost (89.9% accuracy) 

also exhibited strong predictive abilities. In contrast, models like Logistic Regression (74.3% accuracy) and AdaBoost 

(73.0% accuracy) showed lower effectiveness, emphasizing the advantages of ensemble methods such as ExtraTrees in 
delivering accurate obesity predictions. These findings suggest that ensemble models provide a promising approach for 

early diagnosis and targeted healthcare interventions. 

Keywords: Ensemble Method, Healthcare Planning, Machine Learning, Obesity Prediction. 

Dataset link: https://www.kaggle.com/datasets/suleymansulak/obesity-dataset/ 
 

1. Introduction 

Obesity is increasingly recognized as a critical public health concern worldwide, associated with various chronic 

diseases, including cardiovascular disease, diabetes, and certain cancers [1]. The prevalence of obesity has been 

steadily increasing over the past few decades, leading to significant health and economic burdens [2]. Machine 

learning (ML) techniques offer promising solutions for predicting obesity by identifying complex patterns in health 

data that traditional statistical methods may overlook [3]. 

Despite the availability of various ML algorithms, the performance of these models in predicting obesity varies 

significantly. Challenges arise in determining which algorithm provides the best predictive accuracy for different 

population groups, especially when handling high-dimensional datasets with multiple influencing factors [4]. 

Furthermore, there is a need to address the limitations of previous studies, which often focus on specific age groups 

or lack a comprehensive evaluation of different ML methods [5]. 
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The goal of this study is to evaluate the predictive performance of various ML algorithms, including Logistic 

Regression, Decision Trees, Random Forest, ExtraTrees, Gradient Boosting, AdaBoost, and XGBoost, in obesity 

prediction. The models will be compared based on accuracy, precision, recall, and F1-score to determine the most 

effective approach for predicting obesity risk across different age groups and populations [6]. 

This study aims to answer the following research questions: 1) Which machine learning algorithm provides the 

highest accuracy in predicting obesity? 2) Can ensemble methods such as ExtraTrees and Random Forest outperform 

traditional models like Logistic Regression? The hypothesis is that ensemble methods will outperform simpler models 

due to their ability to handle complex, non-linear relationships in the data [7]. 

The research will focus on supervised learning algorithms and datasets containing lifestyle and health-related 

factors influencing obesity. Although various data pre-processing techniques and feature selection methods will be 

employed, the generalizability of the findings may be limited to the specific characteristics of the datasets used [8]. 

Additionally, while the study aims to optimize hyperparameters for each model, factors such as data imbalance or 

regional variations in obesity determinants may impact the results [9]. 

This study aims to contribute to the field by providing a comprehensive comparison of multiple machine learning 

models for obesity prediction, which can help healthcare professionals select appropriate models for early risk 

assessment [1]. By identifying the most effective algorithms, the study can improve the development of predictive 

tools for personalized health interventions, potentially leading to better management and prevention of obesity-related 

health issues [2]. 

2. Method 

This research, as shown in Figure 1, focuses on predicting obesity using various machine learning models. It 

begins with Data Collection, where datasets related to obesity risk factors are gathered. The next stage is Feature 

Engineering using SMOTE, which balances the dataset through Synthetic Minority Over-sampling Technique and 

performs feature transformation [10], [11], [12]. The Modelling Split Data step prepares the data by dividing it into 

training and testing sets.  

In the Model Training stage, models like Random Forest and XGBoost are trained with hyperparameter tuning to 

optimize their performance. Model Evaluation follows, assessing the models using metrics such as accuracy, precision, 

recall, and F1-score. Then, Model Comparison identifies the best-performing approach based on these metrics. Finally, 

Conclusion & Recommendations summarize the findings, suggest the optimal model for obesity prediction, and 

provide directions for future research. This structured approach is designed to enhance predictive accuracy, supporting 

early intervention efforts in healthcare. 
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Figure 1: General Research Design 

Data Collection: 

The dataset used for this research includes various features related to demographic, dietary, and lifestyle factors, 

which are essential for predicting obesity. In Table 1, the features are listed alongside their descriptions, providing a 

detailed overview of the variables used in the analysis. These features include demographic information such as Sex 

and Age, dietary habits like Consumption of Fast Food and Frequency of Consuming Vegetables, and lifestyle factors 

such as Physical Exercise and Schedule Dedicated to Technology. The target variable, Class, represents the obesity 

classification, which is the outcome the model aims to predict.  

The distribution of the target variable, Class, is illustrated in Figure 2, showing the number of instances in each 

obesity category. The dataset is composed of four classes: Underweight (73 samples), Normal (658 samples), 

Overweight (592 samples), and Obesity (287 samples). The bar chart demonstrates that the majority of the dataset 

falls within the "Normal" and "Overweight" categories, followed by "Obesity" and a smaller number of "Underweight" 

cases. This distribution ensures that the model has sufficient data to learn from different obesity levels, although some 

classes have fewer samples, which could affect classification accuracy for underrepresented categories. 

Table 1. Feature Descriptions 

Feature Description 

Sex Gender of the individual (0 for female, 1 for male) 

Age Age of the individual in years 

Height Height of the individual in centimeters 



 

           International Journal of Artificial Intelligence in Medical Issues 

4 

 

Feature Description 

Overweight_Obese_Family Presence of overweight or obesity in family (1 if yes, 0 if no) 

Consumption_of_Fast_Food Frequency of consuming fast food (times per week) 

Frequency_of_Consuming_Vegetables Frequency of consuming vegetables (times per week) 

Number_of_Main_Meals_Daily Number of main meals consumed daily 

Food_Intake_Between_Meals Frequency of food intake between main meals (times per day) 

Smoking Smoking status of the individual (1 if smoker, 0 if non-smoker) 

Liquid_Intake_Daily Amount of liquids consumed daily (liters) 

Calculation_of_Calorie_Intake Whether the individual calculates daily calorie intake (1 if yes, 0 if no) 

Physical_Excercise Level of physical exercise performed weekly (hours) 

Schedule_Dedicated_to_Technology Time dedicated to technology use daily (hours) 

Type_of_Transportation_Used Mode of transportation used most frequently (e.g., walking, cycling, driving) 

Class Obesity classification or health status (target variable) 

 

Figure 2. Distribution Class 

Figure 3 illustrates the correlation matrix for the features in the dataset, showing the pairwise correlation 

coefficients between different variables. The correlation coefficient, denoted as 𝑟, ranges from -1 to 1, where values 

closer to 1 indicate a strong positive correlation, values closer to -1 indicate a strong negative correlation, and values 

near zero suggest no significant linear relationship. The correlation matrix helps identify relationships between 

features and the target variable, Class, which represents obesity levels [13], [14]. The Equation 1 for calculating the 

correlation coefficient between two variables 𝑋 and 𝑌 is given by: 

𝑟𝑋𝑌 =
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑(𝑋𝑖 − 𝑋̅)2 ∑(𝑌𝑖 − 𝑌̅)2
 

(1) 

where 𝑋𝑖  and 𝑌𝑖 are individual data points, 𝑋̅ and 𝑌̅ are the mean values of the variables 𝑋 and 𝑌, respectively. The 

numerator represents the covariance of 𝑋 and 𝑌, while the denominator is the product of their standard deviations. 

The correlation matrix in Figure 3 reveals some notable relationships. For instance, Age has a strong positive 

correlation with Class (𝑟 = 0.58), indicating that as age increases, there is a tendency for obesity levels to rise. 

Similarly, Number of Main Meals Daily shows a moderate positive correlation with Class (𝑟 = 0.51), suggesting that 

individuals consuming more main meals daily are more likely to fall into higher obesity categories. Conversely, 

Frequency of Consuming Vegetables (𝑟 = −0.54) and Consumption of Fast Food (𝑟 = −0.38) exhibit negative 
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correlations with Class, implying that higher vegetable intake and lower fast-food consumption are associated with 

lower obesity levels. 

 

Figure 3. Feature Correlation 

Analyzing the correlations further, Physical Exercise has a negative correlation with Class (𝑟 = −0.39), indicating 

that more physical activity tends to be associated with lower obesity risk. Additionally, Type of Transportation Used 

shows a negative correlation (𝑟 = −0.36), suggesting that active modes of transportation (e.g., walking, cycling) may 

contribute to lower obesity levels. Other features like Smoking and Food Intake Between Meals show weaker 

correlations with Class, indicating they may have a less significant impact on obesity prediction compared to other 

variables in the dataset. Overall, the correlation analysis helps in feature selection by identifying variables that have 

meaningful associations with the target variable. 

Feature Engineering: 

The Synthetic Minority Over-sampling Technique (SMOTE) is a commonly used method for addressing class 

imbalance in datasets, especially in classification tasks [15], [16]. It generates synthetic samples for the minority class 

by interpolating between existing minority class instances. The Equation 2 for generating a synthetic sample 𝑥new is 

given by: 

𝑥new = 𝑥𝑖 + λ × (𝑥𝑗 − 𝑥𝑖) 
(2) 

where 𝑥𝑖 is a minority class sample, 𝑥𝑗 is one of its k-nearest neighbours, and λ is a random number between 0 and 1. 

By generating new samples along the line segments connecting minority class samples and their neighbors, SMOTE 
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effectively increases the number of instances in the minority class, thus balancing the dataset and improving the 

model's ability to learn from underrepresented classes. 

In Figure 4, the results after applying SMOTE to balance the dataset are shown. The count plot displays a uniform 

distribution across all four classes (1: Underweight, 2: Normal, 3: Overweight, and 4: Obesity), indicating that each 

class now has approximately the same number of samples. This balanced distribution ensures that the model will not 

be biased towards any particular class during training, which helps improve the classification performance across all 

categories. The balanced dataset provides a stronger foundation for training machine learning models, allowing them 

to better generalize to new, unseen data. 

 

Figure 4. After Balance Dataset 

Algorithm and Modelling 

The first algorithm, Logistic Regression, is a linear model that estimates the probability of an instance belonging 

to a particular class using the logistic function. It is typically used for binary classification but can be extended to 

multiclass problems [17], [18]. The prediction is based on the log-odds of the outcome being linearly related to the 

input features. The logistic regression model uses the sigmoid function, represented is Equation 3: 

𝑃(𝑦 = 1) =
1

1 + 𝑒−(β0+β1𝑥1+β2𝑥2+⋯+β𝑛𝑥𝑛)
 (3) 

where β0 is the intercept, β𝑖 are the coefficients for the features 𝑥𝑖, and 𝑃(𝑦 = 1) is the probability of the positive 

class. Decision Tree Classifier uses a tree-like structure for making decisions. It splits the dataset into subsets based 

on the feature that provides the maximum information gain or reduces impurity the most [19]. The impurity can be 

measured using metrics such as Gini index or entropy. The Equation 4 for entropy at a node is. 

𝐻(𝑋) = − ∑ 𝑃𝑖

𝑛

𝑖=1

log2 𝑃𝑖 (4) 
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where 𝑃𝑖 is the probability of class 𝑖 at a particular node. Decision Trees are intuitive and easy to visualize but can 

overfit if the tree is too deep. The Random Forest Classifier is an ensemble learning method that combines multiple 

Decision Trees to create a stronger model. Each tree is trained on a random subset of the data, and the final prediction 

is the majority vote of all the trees. This method introduces randomness by selecting a random subset of features at 

each split, which reduces variance [20], [21]. The prediction of a Random Forest can be expressed as Equation 5 

𝑦̂ =
1

𝑀
∑ 𝑓𝑚(𝑥)

𝑀

𝑚=1

 (5) 

where 𝑀 is the number of trees and 𝑓𝑚(𝑥) is the prediction from the 𝑚-th tree. ExtraTreesClassifier, or Extremely 

Randomized Trees, is another ensemble method similar to Random Forest but with more randomization. Instead of 

finding the best split for each node, ExtraTrees randomly selects the split points. This approach aims to reduce variance 

and prevent overfitting by increasing randomness [22], [23]. The prediction process is the same as that for Random 

Forest, but with extra randomness during the tree-building process. 

The Gradient Boosting Classifier is a boosting method that builds trees sequentially, with each new tree focusing 

on the residual errors of the previous trees. The goal is to minimize a loss function by combining the predictions of 

many weak learners. The Equation 6 for updating the model at each iteration is. 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + γ ⋅ ℎ𝑚(𝑥) (6) 

where 𝐹𝑚(𝑥) is the model at iteration 𝑚, ℎ𝑚(𝑥) is the new tree, and γ is the learning rate. Gradient Boosting is 

powerful but requires careful tuning to avoid overfitting. AdaBoostClassifier, or Adaptive Boosting, works by 

adjusting the weights of instances based on whether they are correctly classified [24]. The model gives higher weights 

to misclassified instances, forcing the new classifier to focus on harder cases. The weight update Equation 7 for a 

sample is given by. 

𝑤𝑖 = 𝑤𝑖 × 𝑒α⋅𝐼(𝑦𝑖̂≠𝑦𝑖) (7) 

where α is a measure of the classifier’s error, 𝐼 is an indicator function, and 𝑤𝑖 is the weight of the 𝑖-th instance. 

Finally, XGB (Extreme Gradient Boosting) is an optimized version of Gradient Boosting, designed for speed and 

performance [25]. It includes regularization terms to avoid overfitting, making it more robust. The objective function 

for XGBoost is Equation 8.  

Obj = ∑ 𝐿(𝑦𝑖, 𝑦̂𝑖)

𝑛

𝑖=1

+ ∑ 𝑘 = 1𝑇Ω(𝑓𝑘) (8) 

where 𝐿 is the loss function, Ω is a regularization term for the tree 𝑓𝑘 , and 𝑇 is the total number of trees. XGBoost’s 

additional features like parallel computation and tree pruning make it one of the most efficient algorithms. The dataset 

is split into training and testing sets using the train_test_split function from the sklearn.model_selection module. The 

data splitting is performed to ensure that the model can be trained on a subset of the data (training set) and then 

evaluated on a different subset (testing set) to measure its generalization performance. The dataset is divided in an 80-
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20 ratio, where 80% of the data is used for training and 20% is used for testing. The random_state parameter is set to 

42 to ensure reproducibility of the results. 

Performance evaluation is essential for determining the effectiveness of the machine learning model in predicting 

obesity. Several metrics are used, including accuracy, precision, recall, and F1-score, which help assess the model's 

ability to correctly classify individuals into different obesity categories (Underweight, Normal, Overweight, and 

Obesity). Where accuracy measures the proportion of correctly classified instances out of the total number of 

instances, and is given by the Equation 9. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

where TP (True Positive) represents correctly classified individuals in a specific obesity category, TN (True Negative) 

indicates correctly classified individuals in non-target categories, FP (False Positive) denotes individuals incorrectly 

classified as belonging to the target category, and FN (False Negative) is the number of individuals misclassified as 

not belonging to the target category. Precision, calculated as Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, shows how many of the individuals 

predicted to belong to a specific obesity category actually do, reflecting the model's ability to avoid false positives. 

Recall, given by Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, measures the proportion of actual individuals in a specific obesity category correctly 

identified by the model, indicating the model's sensitivity to true positives. The F1-score, calculated as the harmonic 

mean of precision and recall using the Equation 10. 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 (10) 

provides a balance between precision and recall, making it particularly valuable when dealing with imbalanced 

datasets. These metrics collectively offer a comprehensive evaluation of the model's performance, highlighting its 

strengths and areas for improvement in accurately classifying individuals into the different obesity categories. 

3. Result and Discussion 

Results  

The performance evaluation of different machine learning models reveals significant variations in their ability to 

classify obesity categories. According to Table 2, the ExtraTreesClassifier emerges as the top-performing model with 

the highest accuracy (0.926), precision (0.927), recall (0.928), and F1-score (0.927), indicating its superior predictive 

power. Both the Random Forest Classifier and XGB follow closely, showcasing strong performance with accuracies 

of 0.913 and 0.899, respectively. These results suggest that ensemble methods, particularly those based on decision 

trees, are highly effective for this classification task. On the other hand, simpler models like Logistic Regression and 

AdaBoostClassifier demonstrate lower performance, achieving accuracy scores of 0.743 and 0.730, respectively, 

indicating their limitations in capturing complex patterns within the dataset.  

The bar charts in Figure 5 visually compare the metrics across models, reinforcing the findings. The charts clearly 

illustrate the superior performance of the ExtraTreesClassifier, Random Forest, and XGB across all four metrics, while 
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models such as GradientBoostingClassifier show moderate results. In contrast, Logistic Regression and 

AdaBoostClassifier consistently exhibit the lowest scores, reflecting their reduced effectiveness in this context. The 

visual representation highlights the advantage of using ensemble approaches, especially tree-based methods, which 

excel in managing diverse feature interactions and contribute to higher classification accuracy for obesity prediction. 

Table 2. Performance each Model Machine Learning 

Model Accuracy Precision Recall F1-Score 

Logistic Regression 0.74383 0.74488 0.74803 0.74558 

Decision Tree Classifier 0.87476 0.87536 0.87666 0.87485 

Random Forest Classifier 0.91271 0.91321 0.91485 0.91315 

ExtraTreesClassifier 0.92600 0.92734 0.92839 0.92658 

GradientBoostingClassifier 0.86338 0.86324 0.86700 0.86327 

AdaBoostClassifier 0.73055 0.72511 0.73312 0.72631 

XGB 0.89943 0.89973 0.90189 0.90032 

 

Figure 5. Performance each Model Machine Learning (Bar Chart) 

The confusion matrix provides an overview of the classification performance of the best model, with rows 

representing actual classes and columns indicating predicted classes. The diagonal values (124, 120, 111, and 133) 

show the correctly classified instances for each obesity category (0: Underweight, 1: Normal, 2: Overweight, 3: 

Obesity), demonstrating the model's effectiveness in accurately identifying most cases. Figure 6 indicates particularly 

strong performance in the "Underweight" and "Obesity" categories, where almost all instances were classified 

correctly.  
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However, there are notable misclassifications, especially between adjacent categories. For example, the model 

misclassified 16 instances of "Overweight" as "Normal" and 11 as "Obesity," suggesting difficulties in distinguishing 

between these classes. These off-diagonal values in Figure 6 highlight the challenge of separating nearby obesity 

levels, which may arise due to similar feature distributions or less distinct boundaries. Overall, the matrix reflects the 

model's strengths while pointing out specific areas for improvement in handling neighboring categories. 

 

Figure 6. Confusion Matrix with the Best Model 

Discussion 

The results indicate that ensemble-based models, particularly the ExtraTreesClassifier, achieved the highest 

performance across all metrics, with notable accuracy, precision, recall, and F1-score values. This aligns with existing 

research suggesting that ensemble techniques, which combine multiple decision trees, are more effective in handling 

complex datasets with numerous features and interactions. The strong performance of models like Random Forest and 

XGB further supports the view that ensemble learning methods can better capture non-linear relationships compared 

to simpler algorithms such as Logistic Regression or AdaBoost, which showed lower predictive accuracy.  

These findings are consistent with previous studies that highlight the advantage of tree-based ensemble models in 

classification tasks, particularly when dealing with imbalanced data or complex feature spaces. The use of techniques 

like SMOTE for data balancing has also proven effective in improving model performance, as it reduces bias toward 

majority classes. Practical implications of these results include the potential use of these models in healthcare settings 

to predict obesity risk more accurately, allowing for early intervention and personalized health recommendations. 

However, the model's occasional misclassifications between adjacent obesity categories (e.g., "Normal" and 

"Overweight") suggest that further refinement is needed to enhance precision.  

The research has some limitations, including the specific demographic characteristics of the dataset, which may 

affect the generalizability of the results. Additionally, the analysis mainly focused on supervised learning algorithms, 
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without exploring other techniques like deep learning. For future research, it is recommended to incorporate more 

diverse datasets from different populations and investigate hybrid approaches combining ensemble learning with deep 

learning methods to improve classification accuracy. Further exploration of advanced data balancing techniques could 

also enhance the model's performance across all obesity categories. 

4. Conclusion 

In conclusion, the research demonstrates that ensemble-based models, particularly the ExtraTreesClassifier, 

outperformed other algorithms in predicting obesity, with the highest accuracy (92.6%), precision (92.7%), recall 

(92.8%), and F1-score (92.7%). These results confirm the hypothesis that tree-based ensemble methods are more 

effective for handling complex data and non-linear relationships compared to simpler models like Logistic Regression 

(accuracy 74.3%) or boosting methods such as AdaBoostClassifier (accuracy 73.0%). The use of data balancing 

techniques, such as SMOTE, played a crucial role in improving the model's performance by addressing class 

imbalance. Misclassifications were still present, particularly between neighboring categories like "Normal" and 

"Overweight," indicating areas where the model's sensitivity could be improved.  

The findings address the research questions by showing that the ExtraTreesClassifier, followed by Random Forest 

and XGB, provides the best classification results for obesity prediction. These models effectively distinguish between 

different obesity categories, confirming that ensemble techniques are well-suited for this task. The study contributes 

to the field by providing a comparative analysis of various machine learning algorithms and demonstrating the 

practical value of ensemble methods in healthcare applications for predicting obesity. The research offers valuable 

insights for healthcare professionals seeking to implement machine learning-based tools for early intervention and 

personalized patient management.  

To further enhance the accuracy and generalizability of obesity prediction models, future research should consider 

using more diverse datasets from different populations, which would help in validating the model's applicability across 

various demographic groups. Additionally, integrating hybrid approaches, such as combining deep learning techniques 

with ensemble models, may lead to improved classification performance. Exploring advanced data augmentation or 

balancing techniques beyond SMOTE could also further mitigate the issues associated with class imbalance, 

enhancing the model's effectiveness in real-world settings. 
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