Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik

  • Aji Prasetya Wibawa
Keywords: prediksi, sessions, website journals, multilayer perceptron

Abstract

Peramalan session website journal dilakukan untuk pendukung pengambilan keputusan dalam rangka meningkatkan kualitas dan nilai akreditasi pada website jurnal. Data sessions dianalisis berdasarkan pergerakan pola data time series menggunakan metode multilayer perceptron. Karakteristik yang dimiliki oleh multilayer perceptron yaitu keunggulan dalam penentuan nilai bobot yang lebih baik daripada metode lain, multilayer perceptron dapat digunakan tanpa pengetahuan sebelumnya dan algoritma dapat diimplementasikan dengan mudah serta mampu menyelesaikan masalah linear dan nonlinear sehingga nilai peramalan menjadi lebih baik. Penelitian menggunakan berbagai persentase data train dan test. Perbandingan data train dan test yang memiliki nilai terbaik adalah 80% data train dan 20% data test dengan learning rate 0.4 dan arsitektur 2-1-1. Hasil evaluasi model diperoleh nilai MSE dan RMSE, 0.015357 dan 0.123999 untuk training set serta, 0.018996 dan 0.137826 untuk MSE dan RMSE dari test set. Waktu eksekusi yang dibutuhkan untuk melakukan peramalan adalah 580.0651 second atau 9.667751 menit.

Downloads

Download data is not yet available.

References

V. R. Sutrisno, “Analisis Forecasting untuk Data Penjualan Menggunakan Metode Simple Moving Average dan Single Exponential Smoothing: Studi Kasus PT Guna Kemas Indah.”

R. J. Hyndman, “Forecasting: An Overview,” Int. Encycl. Stat. Sci., pp. 536–539, 2011, doi: 10.1007/978-3-642-04898-2_256.

R. Ginting et al., “Peramalan dan faktor faktor yang mempengaruhi harga bawang merah di sumatera utara.”

B. Siregar, E. B. Nababan, A. Yap, U. Andayani, and Fahmi, “Forecasting of raw material needed for plastic products based in income data using ARIMA method,” Proceeding - 2017 5th Int. Conf. Electr. Electron. Inf. Eng. Smart Innov. Bridg. Futur. Technol. ICEEIE 2017, vol. 2018-Janua, pp. 135–139, 2018, doi: 10.1109/ICEEIE.2017.8328777.

D. R. Chandra, M. S. Kumari, and M. Sydulu, “A detailed literature review on wind forecasting,” Proc. 2013 Int. Conf. Power, Energy Control. ICPEC 2013, pp. 630–634, 2013, doi: 10.1109/ICPEC.2013.6527734.

L. Zhuang, H. Liu, J. Zhu, S. Wang, and Y. Song, “Comparison of forecasting methods for power system short-Term load forecasting based on neural networks,” 2016 IEEE Int. Conf. Inf. Autom. IEEE ICIA 2016, no. 61473174, pp. 114–119, 2017, doi: 10.1109/ICInfA.2016.7831806.

G. De Luca and M. Gallo, “Artificial neural networks for forecasting user flows in transportation networks: Literature review, limits, potentialities and open challenges,” 5th IEEE Int. Conf. Model. Technol. Intell. Transp. Syst. MT-ITS 2017 - Proc., pp. 919–923, 2017, doi: 10.1109/MTITS.2017.8005644.

F. Guo, C. Y. Liu, B. Zhou, and S. Q. Zhang, “Spares consumption combination forecasting based on genetic algorithm and exponential smoothing method,” Proc. - 2012 5th Int. Symp. Comput. Intell. Des. Isc. 2012, vol. 2, pp. 198–201, 2012, doi: 10.1109/ISCID.2012.201.

J. Lian and L. Li, “Predictive Analysis of E-Commerce Enterprises Soft Operating Costs Based on Exponential Smoothing Technique,” no. 1, pp. 1–5.

X. Qin, C. Jiang, and J. Wang, “Online clustering for wind speed forecasting based on combination of RBF neural network and persistence method,” Proc. 2011 Chinese Control Decis. Conf. CCDC 2011, pp. 2798–2802, 2011, doi: 10.1109/CCDC.2011.5968687.

J. M. Nazzal, I. M. El-emary, S. a Najim, A. Ahliyya, P. O. Box, and K. S. Arabia, “Multilayer Perceptron Neural Network ( MLPs ) For Analyzing the Properties of Jordan Oil Shale,” World Appl. Sci. J., vol. 5, no. 5, pp. 546–552, 2008.

Y. S. Park and S. Lek, Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling, vol. 28. Elsevier, 2016.

A. B. HERMANIANTO, “Optimasi multi-layer perceptron pada model prediksi karakteristik musim hujan dan kemarau di kabupaten pacitan abdul basith hermanianto,” 2017.

T. Marwala, “Multi-layer Perceptron,” Handb. Mach. Learn., no. 2001, pp. 23–42, 2018, doi: 10.1142/9789813271234_0002.

S. C. Satapathy, A. Govardhan, K. S. Raju, and J. K. Mandal, “An Overview on Web Usage Mining,” Adv. Intell. Syst. Comput., vol. 338, no. November 2014, pp. V–VI, 2015, doi: 10.1007/978-3-319-13731-5.

P. M. Chawan, “Web Usage Mining,” no. June 2013, 2017.

Z. M. Kesuma, “Feature Selection Data Indeks Kesehatan Masyarakat Menggunakan Algoritma Relief,” Statistika, vol. 11, no. 1, pp. 61–66, 2011.

S. E. Buttrey, “ Data Mining Algorithms Explained Using R ,” J. Stat. Softw., vol. 66, no. Book Review 2, 2015, doi: 10.18637/jss.v066.b02.

G. M. Tinungki, “Metode Pendeteksian Autokorelasi Murni dan Autokorelasi Tidak Murni,” vol. 13, no. 1, pp. 46–54, 2016.

S. G. K. Patro and K. K. sahu, “Normalization: A Preprocessing Stage,” Iarjset, no. April, pp. 20–22, 2015, doi: 10.17148/iarjset.2015.2305.

C. Saranya and G. Manikandan, “A study on normalization techniques for privacy preserving data mining,” Int. J. Eng. Technol., vol. 5, no. 3, pp. 2701–2704, 2013.

Z. Alameer, M. A. Elaziz, A. A. Ewees, H. Ye, and Z. Jianhua, “Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm,” Resour. Policy, vol. 61, no. September 2018, pp. 250–260, 2019, doi: 10.1016/j.resourpol.2019.02.014.

H. K. Cigizoglu, “Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons,” vol. 27, pp. 185–195, 2004, doi: 10.1016/j.advwatres.2003.10.003.

E. Eǧrioǧlu, Ç. H. Aladaǧ, and S. Günay, “A new model selection strategy in artificial neural networks,” Appl. Math. Comput., vol. 195, no. 2, pp. 591–597, 2008, doi: 10.1016/j.amc.2007.05.005.

M. Ettaouil and Y. Ghanou, “Neural architectures optimization and genetic algorithms,” WSEAS Trans. Comput., vol. 8, no. 3, pp. 526–537, 2009.

J. Gomez-avila, Adaptive PID Controller Using a Multilayer Perceptron Trained With the Extended Kalman Filter for an Unmanned Aerial Vehicle. Elsevier Inc., 2019.

W. Setiawan and U. T. Madura, “Prediksi Harga Saham Menggunakan Jaringan Syaraf Tiruan Multilayer Feedforward Network dengan Algoritma,” no. January, 2015, doi: 10.13140/2.1.3467.5525.

N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 7, pp. 2612–2618, 2017.

S. Naduvil-vadukootu and R. A. Angryk, “Evaluating Preprocessing Strategies for Time Series Prediction Using Deep Learning Architectures,” pp. 520–525, 2017.

M. H. SAZLI, “A brief review of feed-forward neural networks,” Commun. Fac. Sci. Univ. Ankara, no. January 2006, pp. 11–17, 2006, doi: 10.1501/0003168.

G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time series,” Eur. J. Oper. Res., vol. 160, no. 2, pp. 501–514, 2005, doi: 10.1016/j.ejor.2003.08.037.
Published
2020-12-31